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How Glider Pilots Get There Faster

The optimisation of flight paths for sailplanes

Frank Irving
Reprinted from SAILPLANE & GLIDING
June/July 1982

COMMENTS Gy Pobert T. Lamson

This is the best article I have seen to date on speed flying.

When reading

this paper a pilot should reappraise his own technique.
1. How do you go about precdicting the next thermal strengtn?
2. How do you estimate average thermal strength?
3. What "G" forces do you use in short wave length, high vertical

velocity thermals?

4. What is characteristic of your sailplane wing response to gusts?

While the analysis is complicatec, there is a dynamic response of the
sailplane to a given gust that is maximized in some flexible wing combination

coupled with pilot sensitivity to the use of the elevator control.

Techniques

in this area can be investigated and refinec by team flying on practice runs.

The references irncluced are very good and most are available throughi OSTIV.

INTRCCUCTICN

Fven if they are not entirely familiar
with the original theory, most soaring
pilots will know about the MacCreacy
ring ana may well be adept in its use.
Both the theory and the cevice {or its
electronic equivalents) relate to very
circumscribea circumstances although
they are both essential to the
understanding ana practice of techniqgues
applicable to more general and more
realistic situations. The object of
this paper is to review recent theories
relating to optimum flight paths ana
their influence on the pilot's actions.

"CLASSICAL"™ THECRY & THE MACCREALDY KRING

The "classical" theory is baseda on the
analysis of a single climb-glide

sequerce. The mean rate of climb is
assumed to be known, as is the
performance of the sailplane, expressed
as a plot of the rate of sink against
forward speed under steady condaitions in
still air. The net change of height is
assumed to be zero. The analysis is
concerned with finding the speed at
which the sailplane should be flown
during the glide, taking into account
the effect of downcurrernts, in orcer to
maximise the overall average speed.
These considerations lead to the
construction of Fig. 1 on which is based
the MacCreacy ring (Fig. 2) which
enables the pilot to requlate nis speed
appropriately. Anthony Edwards las
given an excellent historical review of
these matters so there is no point in
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repeating them here. As a matter of
interest, it is not obvious why the
construction of Fig. 1, which relies cn
the mean rate of climb, correctly gives
the instantaneocus optimum speed in the
presence of a varying down-draught. In
fact it does (provided one has a

total -energy variometer and the load
factor is always near unity) but some
more refined analysis is required to
show that this is so.

pn
|
vl | s
l o N i
Wy ~ R - |
0 N Foo
A [ye
T
\\-\T t
U N
v i
| !
Fla 1 i Fig 2
Fig 1 The classical construction lor determining e ophrnum speed o fiy, Lop,

aker a chmb at Ve and 0 the presence of a dawn-curent W.

Fig 2 The MacCready ring The datum s set to a climb of 2.5kt The salplane (5
baing flown at the optimum specd of 80kl smking at 3 Okt throogh the air which s
itself descending at 1.3kt

I will assume that the reader is
familiar with the MacCready ring (or
corresponding electronic devices) and
with the fact that a total energy
variometer is essential at all times.
Its indications will then depend on the
motions of the atmosphere and the
instantaneous speed of the sailplane tut
will be unaffected by the rate of change
of speed. Throughout this paper, rates
of climb or sink are to be taken as
rates of change of energy height. We
will not concern ourselves with details
of the instrumentation but we will
suppose that with mocern equipment,
whether mechanical or electronic, the
pilot is fairly easily able to regulate
his speed in the MacCready fashion,

The "classical" theory is very

“jidealised indeed. If one attempts to
apply it to a reasonably realistic fight
in which adjacent climbs and glides do
not always involve equal height changes,
it becomes somewhat ambiguous. Also,
there will be occasions when tlacCready
must be abandoned if the next thermal is
to be reached. Such considerations
produced a great deal of debate until as
late as 1981 on what should be the "rate

of climb" setting of the ring under
various circumstancese.

stioulc it be the average rate of climb
in the previous thermal, or the final
rate of cliub in the previous therumal,
or the expected rate of climb in the
next thermal, or a vague moving average
for the cay? Fortunately, quite large
departures from the optimum
inter-thermal speed nave little effect
on the final average speeas SO even
nilots suffering from misapprehensicns
pertorm quite well,

In real 1ife, there are various
constraints winich do not appedr in thne
simple climb/glide analysis. There will
usually be a Tower heignt 1imit applied
to the flignt: any lTower and the pilot
stops trying to soar ana resigns rimself
to landing, Likewise, there is
obviously an upper Timit: either the
rate of climb becomes unacceptably low
or cloudbase or controlled airspace
intervenes.

A comprehensive analysis would take
intoc account such constraints together
with varying thermal strengths anc
variable spacings, pernaps such that the
pilot can only get to the next thermal
by flying at less than the apparent
lacCready speed.

OPTIMAL FLIGHT STRATEGY

Such a comprehensive analysis has been
acne by Litt and Sancer® wio regarded
the problem as one in "discrete optimal
control." Their assumptions are listec
in Table 1.

Table 1

THE LITT AND SANDER ANALYSIS OF OPTIMAL FLIGHT
STRATEGY: ASSUMPTIONS

1. THERMALS AAE CONCENTRATED AT SOME GIVEM PLACES
UNEQUALLY SPACED ALONG THE TRAJECTORY.

2. THEIH LOCATIONS AND CHARACTERISTICS DO NOT CHANGE
WITH TIME.

3. THEIR STRENGTHS ARE GENERALLY UNEQUAL.
4, THE AIR BETWEEN THEM 1S STILL.

5 THERE MAY BE UPPER AND LOWER BOUNDS TO THE OPERAT-
NG HEIGHTS.

6. THE SAILPLANE IS FLOWN AT CONSTANT SPEED BETWEEN
THE THERMALS.

WG WHHEG,
. The »' IGHT BEGINS AND ENDS AT A GIVEN MINIMUM HEIGHT.

EACH G'.DE IS LINEAR BUT ALL GLIDES ARE NOT NECESSAR-
ILY IN TS “AME DIRECTION.
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The far to
thermal he uses and the
speec to fly between the thermals.
Various sets of rules can be deduced,
which depend on the assumed
constraints., The authors considered
four cases, of which the first two were
not very relevant. The first assumes ho
height constraints at all and leads to
the simple MacCready result. The second
assumes no maximum altitude constraint,
which leads to some odd-looking rules.
The MacCready speed is always based on
the climb rate in the previous thermal.
Much more realistic is the third case,
where there are both minimum anda maximum
altitude constraints, leading to the set
of rules listed in Table 2.

pilot has to decide how
climb in the

Table 2
LITT AND SANDER OPTIMUM FLIGHT STRHATEGY

RULES WHEN THE STRENGTH OF A THERMAL IS THE SAME AT
ALL HEIGHTS AND THERE ARE CONSTRAINTS ON BOTH
MAXIMUM AND MINIMUM ALTITUDES

1. AFTER A CLIMB, FLY AT THE MACCREADY SPEED CORRES-
PONDING TO THA1 CLIMB UNLESS THE MAXIMUM HEIGHT HAS
BEEN REACHED IN THAT THERMAL.

2. IN THE LATTER CASE, FLY AT THE MACCREADY SFEED COR-
AESPONDING 7O THE CLIMB IN THE NEXT THERMAL.

3. IF THE NEXT THERMAL 1S WEAK, CLIMB IN IT ONLY HIGH
ENOQUGH TO AEACH A STRONGER THERMAL AT THE MINIMUM
ALTITUDE BY FLYING AT THE SAME SPEED AS IN THE GLIDE
BEFOHE THE WEAK THERMAL.

4. |F THE NEXT THERMAL IS STRONG, CLIMB TO THE MAXIMUM
ALTITULE.

5 THEN PROCEED AS IN RULE 2.

6. HAVING CLIMBED TO THE MAXIMUM ALTITUDE, THE SPEED
FOR THE NEXT GLIDE MAY BE DETERMINED BY THE NEED 10
REACH THE MNEXT THERMAL AT THE MINIMUM ALTITUDE,
MACCREADY DOES NOT APPLY.

7. IF POSSIBLE, CLIMB TO SUCH A HEIGHT IN THE LAST THEH

Mial TiiAad THE FieliBei AN BE ATTAIREDS 1 Vol

v AT i

MACCREADY SPED CORRESPOMNDING TO THE HATE OF
CLIMB IN THAT THERMAL. OTHERWISE. PROCEED AS 1N RULE
b.

Tne overall aim is to do as much
climbing as possible in the strongest
thermals, since rate of climb has first
order effect on the average speed. This
is a fairly realistic set of
circumstances and the rules appear to
correspond with common sense, except
that in some cases the MacCready speed

is based on the previous climb, in
others on the next climb, and in some
situations is irrelevant. Fig. J shows

a araphical
rules.

interpretation of these
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MAXIMUM AND MIHIMUM ALTITUDE CONSTRAINTS

Thare may be weaker thermals between lhose shown: These are ignored
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In the fourth case, the strengtn of
each thermal varies with altitude,
initially increasing, then decreasing.
Altituce constraints are implicit in
such a aistribution of climb rate.
rultes are listed in Table 3.

The

[
| Table 3

RULES WHEN THE STRENGTH OF EACH THERMAL VARIES WITH
ALTITUDE,
INITIALLY INCREASING, THEN DECREASING

NOTE: ALTITUDE CONSTRAINTS ARE IMPLICIT IN SUCH A TIS-
TAIBUTION OF CLIMB RATE.

1 THE MACCREADY RING SETTING MUST CORRESPOND TO THE
INSTANTANEOQUS RATE OF CLIMB AT THE HEIGHT OF LEAVING
THE THERMAL.

2. THE RATE OF CLIMB AT THE HEIGHT OF ENCOUNTERING THE
NEXT THERMAL MUST BE THE SAME.

‘_3_ THE PREVIOUS RULES 6 AND 7 APPLY. i

For a pair of thermals with given
distributions of climb rates, at a
certain distance dapart, this rule leads
to a unique solution which gives the
nheight to leave the first thermal, the
speec to glide, and the height to meet
the seccnd, as shown in F1g 4. These
rules appear in Reichmann's book® ana
had been deduced some years earlier by
Anthony Eawarasb.

Although Litt and Sanders assume still
air between the thermals, it seems

reasonable to suppose that in the
presence of a aown-current,
follows the MacCready ring,
it in accordance with these
is noteworthy that although

one simply
naving set
rules. It
the
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RATE OF CLIMB VARIES WITH HEIGHT
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there 15 a umgue rajectory, as shown

classical analysis was based on very
restrictive assumptions, the result is
still relevant.

None of the above rules can actually
be used precisely as stated because they
involve powers of prophecy. In
particular, the most realistic requires
an ability to forecast the location of
the next thermal and the distribution of
rate of climb with height. Some form of
calculator would then be required to
achieve a rapid solution,

Although formally impossible to apply,
this result is very useful if only as a
guide to more intuitive behaviour. It
is clear that the good contest pilot
must do something quite close to this in
practice.

DOLPHIN FLYING

The "classical" theory is usualy written
as if any atmospheric motions between
the thermals are down-currents. In fact
it applies to vertical atmospheric
motions both upwards and downwarcs so
when flying through a weak thermsl, the
pilot should reduce speed according to
the indication of the MacCready ring
(provided, of course, that tne speed
shown is not unrealistically siow). In
doing so, he extracts some energy from
the atmosphere. Flying straight through
thermals, perhaps pausing to circle in
the really strong ones is, of course,
frequently practised under cloud streets
and can result in very high speeds.

Taking the simpie case of a cloud
street, with some prescribed
distribution of vertical velocities, the
guestions which arise are: is
continuous flight possivle subject to
some condition like zero net loss of
energy heignt? If it is, tiow should tne
machine be flown so as to maximise tne
speed?

By consicering the case in which the
clouc street lies along the cesired
track, I made a modest contribution to
this matter by applying the calculus of
variations/. The result showed that
one shouid proceed in the MacCreacdy
fashion: set the ring datum to some
climb figure and then fly according to
its indications. But what climb
setting? The setting now appears in the
calculations as something much more
abstruse than scme preceived rate of
climb: it is the reciprocal of a
Lagrange multiplier whose value depends
on the characteristics of the whole
cloud street and the constraints. In
practice, it would have to be determined
by trial-and-error.

At that time some similar analyses
appeared eg.8,9 which assumeg - as
does the "classical" theory - that, from
the point of view of the sailplane's
performance, the 1ift is substantially
equal to the weight. On the other hand,
from the point of view of the pilot's
actions, it was assumed that he coulo
instantaneously change speed to
correspond with the MacCready
indications. It became fashicnable to
indulge in fairly abrupt pitching
maneuvers when adjusting the speecd so
that the flight path became markecly
undulatory (and emetic), like that of a
dolprin. Another Tittle analysislV
snowed that this was very reasonable: if
properly conaucted, tne sharper such
maneuvers were, the Tess the energy loss
due to the changes in incuced drag.
However, it significant perticns of the
flight path were to incluce flight at a
load factor (the ratio 1ift/weight)
other than unity, tnis represented 4
marked departure from the original
assumptions.

Clearly, the whole matter was getting
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too complicatec for the simple
analytical approach so various persons,
notably Gedeonils12 _
Piersonl3,14,15  de Jongl6,17 and
Dickmans!8 inculged in computerised
calculations of great complexity. They
all consicered an isolated portion of
the flight path with a specific
distribution of up and down-currents,
The aistribution assumed by Gedeon,
Dickmans and de Jong represented a
fairly realistic isolated thermal whilst
that of Pierson was a single sine wave,
The general conclusions are similar and,
since Pierson's results are easier to
visualise, we will consider them in mcre
detail,

He considered the problem of
traversing such a vertical velocity
distribution so as to minimise the total
height loss, with specified initial and
final conditions of flight ang ouserving
the stall and maximum speed 1imitslb,
Similar calculatiolis were also carried
out with maximum speed as the desired
endl4.

In both cases, with fairly long
wavelengths (1km), the maneuver is’
qualitatively what one would expect:
slow down in the ascending air so as to
spend more time gaining energy; speed
up in the descending air to reduce the
time in which enerqgy is lost. If the
wavelength is long and the vertical
velocities not too great, the speed
adjustments will all be quite gentle and
the result will be substantially the
same as MacCready's (Fig 5). But with
short wavelengths and large vertical
velocities, the optimum maneuvers are
fairly abrupt. For example, in one of
de Jong's examples, where the up-current
has a diameter of 200m and maximum
strength of Sm/s, the maximum load
factor was about 7 1/2!

Mot only are these conditions very far
from the unity load factor assumed in
MacCready flying but it turns out that
the variations in load factor, quite
apart from any accompanying speed
changes, increase the extraction of
energy from the atmosphere,
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Fig 5. This is a maximum speed brapectory with zero overall loss of heght The
piol stows down and gams Aewght in ho bft and dives o gan speed through the
sink generally i the MacCready fashion Foproducey from Rel 14}

Fig 7 Tms s a maxunum speed frijectony with zeq overall loss of height The
wavalenyth of the vertical ar moton s aow S00m . con lrargeet with TGO Fig 5
The priot dives first m order to pertann a pult-out i the ol foliowed by a pushi-over
N the sitk: an “anti-Mac Cready” ragectory. (Reproduced from Bef 14 !

This is explained elegantly in papers
by Gorischl9 ¢ The results are as
follows: If a sailplane is flying
steadily, descending at some constant
rate of sink relative to air which is
ascending, then the rate of gain of
energy height is simply the rate of
ascent of the air less the rate of sink
of the sailplane, as one would expect.
But if the sailplane is indulging in a
pitching marneuver with a load factor
other than unity, the situation becomes
that shown in Fig 6. If the angle
between the 1ift vector and the air
motion is small, then the load factor
acts as an amplifying factor on the air
velocity. We can indeed increase the
apparent thermal strength just by
puiling the stick back, Moreover, it
iay still be possible to extract energy
from descending air by applying a
negative lecad factor. It all Tocks
rather improbable but it is indeed
correct provided that unsteady flow
etffects are neglected.

For a given sailplane, there will be a
Toad factor, depending on the speed anc
the rate of ascent of the air, wnich
maximises the rate of gain of energy
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dh, /dt - nw cos © - Vs (U,n)

Fig 6 Rate of gain of enargy height &l a load facior n when traversmg air rising
with a velocity w The rate of sk Vs approprals (o the lorwardt speed U arid the
fift L which s n himes the weight

height. The point is that the rate of
sink term is really the effective rate
of Toss of energy height by the
sailplane at the prevailing speed and
load factor. Increasing the load factor
increases this rate of loss: if the
lToad factor is too high, this effect
will outweigh the "amplification" of the
thermal strength. The optimum values
turn out to be quite high: for a
Standard Class glider flying at 80kt and
meeting air rising at 4kt, the optimum
load factor is about 4.5. Such load
factors can only be sustained very
priefly: even at a load factor of 3 and
an initial speed of 80kt, the machine is
pointing vertically upwards after 2 1/2
seconds. However, this interesting
theory does explain the following
results of the computer calculations:
(a) For long wavelengths (1km or
more), the optimum trajectory
requires MacCready-style speed
variations with relatively little
variation in Toad factor,
(b) For short wavelengths (1/2km or
less), the optimum trajectory
looks quite different (Fig 7).
On encountering the up-current,
the pilot should dive and perform
a puil-out in the rising air,
followea by a push-over in tne
sinking air. This is Lecause the
gains due to load factor

variation now predominate, The

corisequential speec variation
might be described as
"anti-MacCreaay™.

(c) There appear to be sone
intermecdiate conditions foer wnich
eitner type of trajectory is
"optimum",

TENTATIVE RULES

Apart from the simplest application of
the MacCreaay ring, all subsequent
techniques require powers of foresigit,
perhaps even of prophecy. The pilot
only has limited powers of foresight:

he can listen to pilots ahead of him on
the radio and he can Took at the

clouas. But he certainly coes not know
the distribution of thermal strengtn in
the detail required. Nevertheless, such
analyses are useful ana may suggest
rules which, although not exactly
correct, may give something close to the
iceal result without involving

prophecy. GorischlY, for example, is
suggesting the rules shown in Table 4.

Table 4 —E
DOLPHIN FLYING |
GORISCH'S TENTATIVE RULES

1. ADJUST THE AVERAGE SPEED ACCORDING TO THE SPEED
COMMAND OF THE MACCREADY RING FITTED 10 AN AVERAG-
ING TOTAL-ENERGY VARIOMETER.

|
2, PERFORM LOAD VARIATIONS ACCORDING TO THE INSTAN- [
TANEOUS VARIOMETER READING. THE SPEED VARIES, BUT l
ITS AVERAGE SHOULD BE MAINTAINED ACCORDING TO THE
PRAEVIOUS RULE, J

|
|
|
|
|
|
. -

Presumavly one coula ada that the
MacCready ring setting snoula comply
with the Litt-Sander rules.

The Gorisch rules leave the
time-constant for the averaging to be
cetermined and here there is scope for
further work.

CONCLUSION

During the last few years, consiceravle
advances have been mace in understarnding
optimal strategies for cross-country
flying using atmospheric convection.
The MacLready concept nas becen clarifiea



and the dynamics of delphin flying are
well understooa. There are indications
that more satisfactory instruments
together with rules for their use may
emerge from these consiaerations. The
optimisaticns considerec nere are not
the only ones to have received recent
attention. There is, for example, the
whole matter of using cloud streets when
they are at some_angle to the desired
mean track eg, ¢1,
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