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In the paper "Energy Exchange Between a
Sajlplane and Moving Air Masses..." by
W. Gorisch, presented at the XV OSTIV
Congress, the principles of optimal
choice of airspeed and normal
accelerations for a non-stationary
dolphin-mode flight were given. In
addition, the author's paper "Some
Problems of the Dolphin-Mode Flight
Technique" presented at the XVI OSTIV
Congress concerned, in part, the same
probiem. {Also see "Technical Soaring",

Vol. VI, No. 3, March 1981 for a related

paper "Energy Gain in Pitching
Maneuvers" by W. Gorisch.)

The use of dynamic speed changes when
flying through areas of vertical

s

f power

currents is aimed at increase o
transferred from the atmosphere
sailplane. This power may be d
on the basis of a fundamental

La i
of mechanics stating that the deri
with respect to time of the total
mechanical energy of a rigid body is
given by the product of the velocity and
the component in the velocity direction
of the forces affecting the velocity in
an inertial co-ordinate system,

The formula for the power transferred
from the atmosphere to the sailplane
flying through a vertical air current of
constant velocity wayp was given by
Gorisch!

dE = [L + D] [V + v

E' =0t = [L + D] [V + wigtpl
dt [1]

Lwgtpcosy - DV

where ¥ s the angle between 1ift L and
air velocity vector wyi,. (Note that,

by definition, drag is parallel to
velocity and 1ift is orthogonal to
velocity.

Since we are only interested

in vertical motion of the atmosphere
watm and V are orthogonal and 1ift and
Wayy are approximately parallel.)

The first term of the right side of
this equation is the power transferred
from the atmosphere to an ideal
sailplane {with zero drag) and the
second term is the power lost due to the
aerodynamic drag.

Since both terms depend on the
aerodynamic force which can be
represented by an appropriate g-number,

the rate of energy transfer must depend
strongly on the g-loading; thus, an
optimal value of load factor ngpt
corresponding with the maximum of power
transferred from the atmosphere to the
saiiplane can be calculated. The higher
gliding ratio of the sailplane at a
given airspeed, the Tower contribution
of the equation's second term and the
higher value of ngyt. The same effect
is to increase the effective intensity
of the updraft waiy . cosy which
influences the first term of formula [1]
and results in the increase of the
optimum value of the load factor
Nopt - It seems, however, that this
siriple -~ from the point of view of
mechanics - reasoning is not readily
understandablie by means of widely known
physical terms such as potential and
kinetic energy. At the same time it is
obvious that the usefulness of dynamic
controlling of the saiipiane in
dolphin-mode flight through vertical air
currents for additional energy gain must
be explained also to pilots having poor
mathematical background. It is possible
only on the basis of simple and easily
understandable physical models.

For better presentation of the problem
let us analyze the case of an ideal
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sailplane in a level flight at the
airspeed Y and encountering an updraft
having a velocity watym. Thus, f = O:

Bt = I_Watm [2]

and therefore the power transferred from
the atmosphere is proportional to the
13F% L

If the pilot does not perform a
dynamic pull-out then

Lo=m.g —2E" = m.g.waen

and the power absorbed from the atmos-
phere transfers in time At into the
potential energy increment

AE = m.g.Ah [3]

pot = MWatp. AL
which is physically evident.

For precision it must be mentioned
that a "step" increment of the
sailplane's kinetic energy

2
= m'wat“]
2
proportional to the square of the
velocity of transportation wygy occurs
at the moment of entry into the updraft.
Let us now examine the pull-out
maneuver. In a co-ordinate system
moving together with the vertical air
current [Fig. 1], a sudden change of
angle of attack induces a 1ift incre-
ment AL and consequently a curvature of
the flight path. In time At the
sailplane moves from point 1 to point 2.
Following formula [2], the additional
power absorbed from the atmosphere

Bk in

E' = AL.watp-cos ¥ [4]

and the additional energy increment at
point 2, due to dynamic maneuvering:

AE = &L.Watm.COS‘fmeanﬂﬁt [5]

Let us now try to find the physical form
of this additional energy.

The potential energy increment m.g Az
due to the fact that pcint 2 Ties higher
than point 1 is of no importance because
it is compensated by equivalent drop of

kinetic energy due to the loss of the
sailplane's airspeed; in such a case we
observe only a change of the form of

energy and consequently no gain of total
energy occurs. Thus, we can neglect
this potential energy increment assuming
simultaneously that the airspeed on the
way from 1 to 2 remains constant.

Let us now seek the additional energy
increase, evaluated by means of formula
[5] in the form of kinetic energy. For
this purpose we must decompose the
airspeed at point 2 into horizontal and
vertical components [Fig. 1]. Taking
into account the transportation velocity
of co-ordinate system wa¢y, the total
kinetic energy of the sailplane at point
i

Exin = g(Vcosf}z = %(Vsinf + Waty)?

[6]

_mv? =IHN2
Z

The first two terms of the right side
of this equation represent the kinetic
energy of the sailplane in straignt
flight, i.e. at point 1, while the third
term represents an amount of additional
energy due to the curvature of the
flight path in a velocity of transpor-
tation field. The formula [6] shows
clearly that necessary conditions for
the occurance of the additional kinetic
energy are two factors - flight path
curvature angle { and velocity of
tranportation wyip.

Now it must st1T1 be proved that the
power required for the energy gain is
equal to the power absorbed from the
atmosphere according to formula [4]:

atm :
- + Mgty Vsind

E' = _9 (mw,¢m.Vsind)
e atm-Vsin

= m.watmvg%cos¥ = AL.Wap.COS

1 d¢)=
since mV_df AL
Let us now sum up the above considera-
tions as follows: the positive or
negative energy exchange between
atmosphere and a sailplane, resuiting
from its dynamic longitudinal maneuvers
during flight through vertical air
currents, can be easily explained to a
pilot as an additional amount (positive

or negative) of kinetic energy. This is

due to the fact that the vertical
component of the sailplane's velocity,
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Flight path

tm.

Fig. 1 Flight path of a sailplane in a co-ordinate system

moving with velocity Watp-

Wy

for.

(%)

Fig. 2 Flight path of a sailplane performing a dynamic
maneuver in an area of constant vertical velocity.

with respect to the earth, is a sum of is the additional energy increment due
the vertical component of the sail- to the dynamic maneuver,

plane's airspeed and the velocity of Also, conclusions drawn by the author
transportation (velocity of the air [Ref. 2] concerning optimization of
current). The kinetic energy of the non-stationary dolphin-mode flight can
resultant motion is proportional to the be made perceptible to the pilots when
square of this sum and therefore is this simple model of dynamic energy
higher than the sum of the energy of exchange is used.

both separate motions.
In the same manner, we can explain a

formula given by Gorisch concerning the REFERENCES
sailplane's energy gain in a flight '
through an area of constant vertical 1. Gorisch, W.: "Energy Exchange Between
velocity wyey [Fig. 2]. a Saflplane...,” Aero Revue, 11/1976
& 12/1976.
AE = moWaph2' + mglwatm = Wypean) At 71 2. Sandauer, J.: "Some Problems of the

Bolphin-Mode Fiight Technique," Aero
where the first term of the right side Revue, 1/1981.




