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Abstract 
The energy state of a sailplane is described in terms of its total energy, i.e. the sum of potential and kinetic en-
ergy.  Total energy (TE) may be defined either in an air-fixed reference frame (TE_AIR) or in an earth-fixed ref-
erence frame (TE_EARTH).  Both definitions are of importance here.  The fundamental physical laws are de-
duced here and, depending on the actual application, one will opt for one or the other definition.  In a practical 
example, the optimum flight path of a straight-line flight through an ascending air current (updraft) is computed 
and discussed.  There are two types of mechanism that allow an energy gain of the sailplane: static soaring in 
updrafts, and dynamic soaring with changes of wind speed.  Even though during “normal” flights updrafts are 
the primary source of energy, the exploitation of dynamic effects is likely to make a noticeable improvement of 
performance.  In soaring practice, however, dynamic effects are seldom used in order to gain energy these days, 
and the main reason for this seems to be the absence of an appropriate measuring instrument.  Therefore, some 
aspects of the question of how an “ideal variometer” should be designed are briefly discussed.  It turns out that 
the creation of an ideal variometer also would open up the possibility to measure the magnitude of dynamic ef-
fects.   

 
Nomenclature 

aa
r

  apparent acceleration, a d  u / dt g= −
r rr

b  maximum updraft gradient in updraft model Eq. (4.1) 
D
r

  drag force 
Ea  total energy in an air-fixed reference frame (TE_AIR) 
ea  specific total energy in an air-fixed reference frame 

(TE_Air) 
Eg  total energy in an earth-fixed reference frame 

(TE_EARTH) 
eg  specific total energy in an earth-fixed reference frame 

(TE_Earth) 
g
r

  acceleration due to gravity 
h  height above ground   
I
r
r   inertial force in an air-fixed reference frame 
L   lift force 
M  mass of aircraft 
n  load factor 
ps  static pressure 
R  radius of updraft in updraft model Eq. (4.1) 
q  dynamic pressure (q = ½ ρ v2) 
ur   velocity of aircraft with respect to the ground 
u ground speed 
uMC MacCready value (expected climb rate in the next up-

draft)  
vr   velocity of aircraft with respect to the air 
v  true airspeed 
vs  intrinsic sink rate of the sailplane, caused by drag 
Videal indicated value of ideal variometer (same for other va-

riometer types) 
wr

a

  velocity of wind (with respect to the earth) 
dynw  dynamic energy component in an air-fixed reference 

frame 

 
g
dynw  dynamic energy component in an earth-fixed reference 

frame 
w0  intensity of updraft in updraft model Eq. (4.1) 
wh  horizontal component of wind velocity 
wv  vertical component of wind velocity 
W
r

  weight of aircraft 
αx  angle of attack (related to the aircraft longitudinal axis) 
γ  flight path angle (between v  and the horizontal) r

θ  pitch angle 
ρ  density of air      
 

Definition of total energy 
 In still air, the sailplane cannot gain energy and, because of 
the drag, only gliding flight is possible.  We shall, therefore, 
immediately look at the movement of an aircraft in moving air 
(Fig. 1).  If the aircraft moves at a velocity of vr  with respect 
to the air, and wr is the wind velocity, an observer on the sta-
tionary ground will notice the superposition of these velocities: 
 
   u v w (1.1)= +

r r r  
 
 The aircraft’s energy is characterized by its total energy 
which is composed of the potential energy (altitude) and the 
kinetic energy (speed).  Two definitions are possible: 
• Total energy in an air-fixed reference frame (TE_AIR): 

 
  
 

2
a

1E M g h M v= + (1.2)
2

• Total energy in an earth-fixed reference frame 
(TE_EARTH): 
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 The designations “TE_AIR” and “TE_EARTH” were in-
troduced here in order to distinguish between these two defini-
tions.  If the term “total energy” were applied to describe both 
models, this would lead to misunderstanding and confusion. 
 
Specific total energy 
 TE_AIR and TE_EARTH are often calibrated to the weight 
W = M g.  This results in the following definitions: 
• Specific total energy in an air-fixed reference frame 

(TE_Air): 
 

• Specific total energy in an earth-fixed reference frame 
(TE_Earth): 
 
 
  

 The term “energy height” also is used commonly as a syn-
onym for “specific total energy”.   
 The term “total energy” became common among glider 
pilots with the introduction of the “total energy variometer” 
which measures changes of TE_Air.  When the flight speed is 
changed, potential and kinetic energy are converted into one 
another, whereas the total energy remains constant (in still air 
and if one neglects the energy loss due to drag).   
 
Example 
 A surplus in airspeed shall be converted into altitude in still 
air.  If the aircraft mass is M = 400 kg, and the airspeed is re-
duced from v0 = 35 m/s to v1 = 25 m/s, the kinetic energy 
changes by  

 
 
 

The potential energy rises by the same amount (neglecting the 
drag); the gain of altitude is 
 
   
 

If the same flight maneuver is carried out with a constant 
tailwind of w = 15 m/s, nothing will change from the view-
point of an air-related observer, because the evenly flowing 
air-stream may be regarded as an inertial system as well.  
However, an earth-fixed observer will measure the initial 
speed u0 = 50 m/s and the final speed u1 = 40 m/s; for them the 
change of kinetic energy is 
 
   
The resultant gain of altitude is the same in both instances:   
Δh = 30.6 m.  The question of how the energy difference 
 

 can be explained will be answered later (see Eq. (3.6)). 2
gE M g h M u

2
= +

1 (1.3)
 Occasionally the question may arise whether the traditional 
TE_Air variometer should not better be replaced by a 
TE_Earth variometer (which measures changes of TE_Earth).   
The example, however, shows that this would not be unprob-
lematic: During speed reduction in a tailwind the TE_Earth 
variometer indicates an energy loss; it behaves here like an 
over-compensated TE_Air variometer.  As will be seen later 
(Eq. (3.3)), whenever the air is moving compensation does not 
work properly. 
 In the following two sections, let us investigate what ef-
fects air movements have on TE_Air and TE_Earth. 
 2

a
a

E ve h
M g 2g

= = + Total energy in an air-fixed reference frame (1.4)
(TE_Air)  

 For the process of deducing the energy equation that is of 
interest here, we start with Newton’s Fundamental Law of Dy-
namics.  Applying it to an earth-fixed reference frame, it states: 
 
 
 
M stands for the aircraft mass and for the velocity with re-
spect to the ground.  The forces acting upon the aircraft are lift 

ur

L
r

, drag D
r

, and weight W
r

. 
 When Newton’s Law is applied to an air-fixed reference 
frame we must consider that the system accelerates, and there-
fore we have to make allowances for an inertial force I

r
.  

Thus, we arrive at:  
 
   
 
If we include Eq. (1.1) into Eq. (2.1), it becomes apparent that 
 
   
 
 In order to arrive at the energy equation, we must multiply 
Eq. (2.2) on both sides in scalar fashion with the vector vr  
(“dot product”).  Equation (2.2) is then transformed into 
 
  
 
The change of kinetic energy equals the scalar product of the 
velocity vector vr  and the sum of all forces acting on the air-
craft.  Next, if one applies Eqs. (1.1), (1.4) and (2.3) one ar-
rives at the following important result:  
 

 
 
The first component 
 
 

2E
(1.5

M g 2g
= = +g

g
ue h ) duM L D W

dt
= + + (2.1)

r r r r

dvM L D W I (2.2)
dt

= + + +
r r r r r

dwI M
rr

(
dt

2.3)= −

( )a 2 2
kin 1 0

1E M v v 120
2

Δ = − = − kJ.

( )dvM v v L D W I
dt

= + + +
r r r rr (2.4)2 2a

pot 1 0kin
E v vEh 30.6

M g M g 2g
Δ −Δ

= m.Δ = = − = −

( )g 2 2
kin 1 0

1E M u u 180 kJ.Δ = − = −

g a
kin kinE E 60 kJΔ − Δ = −

2

s
v Dv (2.6)
M g

= −

TECHNICAL SOARING                                                                                                          VOL. 35, NO. 3 – July - September 2011 67



is the intrinsic sink rate of the glider.  It is caused by the fact 
that in order to overcome the air’s inevitable drag, energy is 
permanently used up.  The two remaining components offer a 
chance to gain energy.  In order to conform to conventions, 
they shall be designated as static and dynamic energy compo-
nents.   
 The static energy component 
   
 
results from updrafts and downdrafts.  Updrafts are the main 
source of energy for soaring flight. 

The aircraft’s dynamic change in energy is defined by 
 
 
 
Here is the flow rate of the air, as observed from the air-
craft.  It is multiplied in scalar fashion (dot product) with the 
change of wind velocity. 

v−r

 Therefore, if the wind contains a component of acceleration 
which has the same direction as the air flow (with respect to 
the aircraft) this will lead to a dynamic gain of energy. 
 If one divides the wind velocity in Eq. (2.8) into a horizon-
tal component wh and a vertical component wv, the result for 
straight and steady flight is 
 
  
 
whereby γ represents the angle between the horizontal and the 
velocity of flight (positive value for ascent).  
 
Flight in a field of wind gradients (wind shear) 
 Let us observe a landing approach with strong head wind.  
Due to friction, the lower layers of air are slowed down; the 
course of the wind may look as shown in Fig. 2.  Much higher 
wind gradients may occur than might be expected from the 
graph if turbulence is encountered.  A particular point of the 
landing approach is picked, for which the following numerical 
values shall apply: 
 
    v = 126 km/h = 35 m/s;   γ = -3°;  
 
From Eq. (2.9) and dh / dt v sin= γ then follows: 
 

  
 
The total energy variometer displays a loss energy of -1.3 m/s 
which is in addition to the aircraft’s intrinsic sink rate vs.  De-
spite the absence of any downdraft this should not be inter-
preted as an instrument error.  If you fly at a constant airspeed, 
the loss of height expected, due to the variometer reading, ac-
tually occurs.  
 Energy also can be gained in a wind shear.  The elegance 
and perfection displayed by albatrosses in performing the art of 
dynamic soaring is a strong incentive for trying to follow their 

example one day, perhaps in the boundary layer of a low level 
jet. 
 

Total energy in an earth-fixed reference frame 
(TE_Earth) 

 The energy equation is deduced in a similar way as in the 
previous section, i.e. by multiplying Newton’s equation of mo-
tion Eq. (2.1) on either side in scalar fashion by ur .  If one still 
uses Eq. (1.1) and the equation of definition Eq. (1.5), the re-
sult initially will be 

stat vw w= (2.7)

  

where ( )w L D+
r rr  is the energy per time unit (power) extracted 

from the ambient air.   Applying Eq. (2.1) once more, we ar-
rive at 

 
  

 
and finally 
 

 
 
The intrinsic sink rate of the glider vs and the static energy 
component wstat agree with Eq. (2.5).  For the dynamic energy 
component we see that 
 
  
 
To interpret this result we can use Eq. (3.2).  The term  
 
  
denotes the “apparent” acceleration which is measured by ac-
celerometers (and which is experienced as an acceleration by a 
human body); aa 0=

rr  signifies weightlessness, during a non-
accelerated straight-line flight one has a g .    a
 A (static or dynamic) energy gain is the result of apparent 
acceleration 

= −
r r

aar  coinciding with the direction of the wind-flow   
w.r  At this point energy is exchanged between the sailplane 
and the surrounding air.  (An energy gain of a sailplane is pos-
sible only if the energy of the atmosphere is diminished by the 
same amount.)  The speed of the air will slow down.  To put it 
in other words: “One must attempt to equalize the fluctuations 
in the wind” (Prandtl1). 
 As a consequence of this, during a straight-line flight 
through an updraft one must fly with an increased load factor, 
through a downdraft one must fly with a decreased load factor.   
Prandtl’s advice, however, is universally true; for example it 
also may be applied to lateral wind gusts encountered in turn-
ing flight.  Much consideration is bestowed on this kind of 
energy-gain in the context of microlift gliders and small 

a
dyn

v dww (2.
g dt

= − 8)
r r

a vh
dyn

dwdwv vw cos sin (2.9)
g dt g dt

= − γ − γ

2
a h
dyn

dwvw sin cos 1.3 m / s (2.10)
g dh

= − γ γ = −

( )gde v D 1 w L D
dt M g M g

= − + +
r rr (3.1)

gde v D 1 duw g (3.2)
dt M g g dt

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

r
rr

g
dyn

1 duw w
g dt

= (3.4)
r

r

aa du / dt g (3.5)= −
r rr

hdw m / s0.2
dh m

= −
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UAVs.  To what extent this can play a role for modern high-
performance sailplanes is difficult to say.  Because of the fact 
that there is no instrument on the market that (unequivocally) 
indicates dynamic energy changes, the pilot of the sailplane is 
left guessing.  
 Following Peter Riedel2, one can divide dynamic soaring 
into two categories.  The type of dynamic soaring just de-
scribed (exploiting small-scale wind fluctuations) is classified 
by Riedel as Category I.  The flight of the albatross (in the 
extensive field of gradients of shear wind) is classified as Cat-
egory II.  
 With the help of Eq. (3.4) we can answer now the question 
put in the introductory example.  If one reduces flight speed 
with respect to the ground by ∆u = -10 m/s in the presence of 
constant tailwind of wh = 15 m/s, TE_EARTH is reduced by 
   
  
(The aircraft mass is 400 kg.)  According to the law of preser-
vation of energy, energy of the sailplane is transferred to the 
ambient air. 
 

Flying through an updraft 
 We look at another example: the symmetric straight-line 
flight through updraft is to be investigated now.  Particularly 
the peripheral zones of the updraft are subject to variations of 
vertical wind-speed, and the dynamic effects described in pre-
vious sections will appear now.  First, the optimum flight path 
shall be computed and then be interpreted with the help of 
TE_Air and TE_Earth.   
 In order to exemplify the essence of this, the strongly ideal-
ized updraft model shown in Fig. 4 has been chosen.  It is 
based on the equation 
 

  
with 
 Intensity of updraft    w0 = 3 m/s 
 Radius of updraft     R   = 1000 m 
 Maximum updraft gradient  b   = 0.03 (m/s)/m 
 
The updraft can be divided into 3 phases: 

i. Increase of vertical wind speed with gradient b 
ii. Constant vertical velocity w0 

iii. Decrease of vertical wind speed with gradient -b 
 
 The cruising speed with an expected climb rate of uMC = 3 
m/s shall be optimized.  The performance criterion (Eq. (I) in 
Fig. 3) is basically the same as in classical speed-to-fly theory, 
generalized to instationary flight.  In Fig. 3 the optimization 
problem is formulated.  It is a variational problem that can be 
solved by applying Pontryagin’s maximum principle.  (A two-
point boundary value problem has to be solved for the system 
of state equations and adjoint equations.)  The results are 
shown in Fig. 4. 

 For the sailplane, we assume the speed polar     
 

 12 2
3

s 2 2

m 1 mv 10 81000 v (4.
vs s

−
⎛ ⎞ ⎛ ⎞

= − ⋅ − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

2)   
 
(lift/drag ratio 45 at a speed of 108 km/h).  For instationary 
flight Eq. (V) in Fig. 3 is applied.  This is an idealization.  
Rudder losses and a non-stationary air-stream around the 
wings are not considered here.  However, one can still expect 
that the results of the calculations do indicate a clear tendency.   
 In the inner core of the updraft region (phase ii) the speed 
of the updraft remains constant.  A stationary phase of flight is 
the result, at a speed of flight which follows from the speed-to-
fly theory in a well-known manner.   In the peripheral zones 
(phases i and iii) however, the classical theory (which is true 
only for stationary flight) can no longer be applied. 

g hE M w u 60 kJ (3.6)Δ = Δ = −  In the case of optimum flight, dynamic effects will lead to 
energy gain.  
 

• Description with the help of TE_Air (see γ(s) and 
aw (s) in Fig. 4): dyn

One has to concentrate on these areas of updraft where 
the vertical air flow changes speed.  In case of an updraft 
gradient dwv/ds ≠ 0, the following is true: 

 
 a 2 v

dyn
dw1w v sin cos (

g ds
= − γ γ 4.3)

 
On entering the area of updraft, the vector of flight-speed 
must be directed downwards (dwv/ds > 0, γ < 0),           
and on leaving the same, it must be directed upwards 
(dwv/ds < 0, γ > 0). 
 
• Description with the help of TE_Earth (see n(s) and 

gw (s) in Fig. 4): 
( ) ( )

dyn
 Dynamic energy gain takes place here in the core area of 

the updraft (at wv > 0).  If one flies with a higher load fac-
tor (n > 1), the following is true: 

 
  

     
 But flying with an increased load factor is only possible 

for a limited time.  It means here an upward acceleration 
of the sailplane, and there must be a deceleration (in up-
ward direction) before it or after it.  An overall energy 
gain is only achieved if the phase of deceleration (n<1) 
lies outside the inner updraft region. 

  
 The optimization of flight path is not dependent on the 
definition of total energy.  So it is only a question of useful-
ness, which of the two descriptions you will prefer.  Since 
flight begins and ends in still air, the gain of energy over the 
entire flight route is the same: ∆Ea = ∆Eg.  
 In Fig. 5 the optimum flight through a narrow thermal is 
shown.  The updraft model proposed by Gedeon is used3.  

v 0
0 0

2b R r 2b R r
w (r) 0.5 w tanh tanh (4.1)

w w
− +⎛ ⎞

= +⎜ ⎟
⎝ ⎠

( )g v
dyn v vw w w n cos 1

g dt
= ≈ γ −

du1 (4.4)
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Compared with the previous example there is no phase ii and 
the phases i and iii are partly merged.  Notice that the flight 
speed v(s) is almost the opposite of what would be expected 
from speed-to-fly theory.  The amount of energy gain due to 
dynamic effects is remarkable.  However, the curves are non-
causal: one must react to the updraft-gradients before reaching 
them.  So, in flight practice only a sub-optimum flight is feasi-
ble at best.  (If the variations of n(s) are done at the wrong 
places, great energy losses may occur as well.  For today’s 
soaring pilots it is probably the best advice to traverse small 
updrafts with nearly constant airspeed.) 
 Fig. 6 shows a further example.  This time the four-cell 
type of Gedeon’s updraft model is used.  

 
The ideal variometer 

 In regard to the problem of finding suitable instrumenta-
tion, only the variometer will be looked at here.  A variometer 
displaying the true vertical speed of the air stream wv will be 
called the “ideal variometer”.  The history of the development 
of the variometer can be described as a step-by-step approach 
towards the ideal variometer.    
 The original altitude variometer measures changes of the 
static air pressure ps and displays changes of altitude: 
 
   
 
From Eq. (2.5) and (1.4) we arrive at: 
 
   
 
VAltitude is the displayed value.  We are still far away from the 
ideal variometer. 
 Since modern sailplanes operate over a wide speed range 
especially the last component has a very disturbing effect 
(“stick-thermal”).  It may be compensated by an additional 
measurement of changes of dynamic pressure q.  Thus, we 
arrive at the total energy variometer: 
 
  
  

5)

)

The total energy variometer displays changes of TE_Air.  
From Eq. (2.5) we already know: 
 
   
 
 (The term “total energy variometer” used here always re-
fers to the traditional TE_Air-variometer.) 
 With the netto variometer the sailplane’s intrinsic sink rate 
vs is compensated by means of the speed polar (and eventually 
the load factor).  One measures merely the sum of wv and 

: a
dynw

 
   a

Netto v dynV w w (5.= +
 

 During the search for updrafts and during centering a ther-
mal, however, we just want to see the true speed of the updraft; 
the dynamic energy component  is only distracting.  So, a 
consistent further development of the variometer would be to 
measure both the speed of the updraft and the dynamic energy 
component independently from one another.  With that one 
arrives at the ideal variometer: 

a
dynw

 
   
  
 It is not at all an easy task to build an ideal variometer that 
works in a satisfactory way.  However, in sailplanes used for 
research purposes the measurement of the vector of the wind’s 
velocity (measuring all three components) is possible already 
today (refer to BAT probe4).  The measurement is based on Eq. 
(1.1):   
  w u v (5.7= −

r r r  
 
 The velocities ur and vr  must be measured; the wind veloc-
ity then can be calculated from the difference of these two val-
ues.  For the ideal variometer, this can be restricted to the ver-
tical components of the vectors.  In order to get an impression 
of the difficulties of the measuring task, it perhaps suffices to 
look at the special case of symmetrical straight-line flight.  The 
formula for the determination of wv (which is more compli-
cated in the general case) is then: 
 
   
 
where γ is the inclination of the vector  in relation to the 
horizontal, which can be computed from the pitch angle θ and 
the angle of attack αx:  x

vr

γ = θ − α .  Looking at Eq. (5.8), 
one gets easily convinced that even small errors in the deter-
mination of γ will have a pronounced effect on the end result. 
 There are a lot of other possible error sources which may 
corrupt the measurement.  Hopefully they can all be managed 
in a sufficient way.  Compared to the BAT probe there is no 
need to measure very short fluctuations of the wind, since the 

uency fluc-
tuations.  Thus, a filter can smooth the measurement result.  
But this almost automatically means a time delay and, on the 
other hand, the measurement must not be too slow.  This prob-
lem is well-known from variometers. 

pilot cannot react quickly enough to these high freq

 Measurement expenditure can be reduced if one resorts to 
the laws of aerodynamics and flight dynamics (refer to e.g. 
Myschik, Sachs5).  It is important here that the variables of 
performance and the behavior of the aircraft will be repro-
duced as realistic as possible by assumptions of the theoretical 
model.   
 Apart from the air’s vertical velocity wv, the change of total 
energy (TE_Air) is still of interest.  If you imagine the ideal 
variometer and the total energy variometer combined in an 
instrument with two pointers, there is also the possibility to 

sdpdh 1 (5.1)
dt g dt

= −
ρ

a
Altitude v s dyn

dh v dvV w v w (5.2)
dt g dt

= = + + −

aa
TotalEnergy v s dyn

de
V w v w (5.4)

dt
= = + +

a sde dp1 dq dh v dv (5.3)
dt g dt dt dt g dt

⎛ ⎞= − − = +⎜ ⎟ρ

Ideal vV w (5.6)=

v
dhw vsin (5.8)= − γ
dt

⎝ ⎠
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measure the magnitude of dynamic effects.  The difference 
between the positions of both indicator hands will be: 
 
   a

TotalEnergy Ideal dyn sV V w v (− = + 5.9)
 
or, if the total energy variometer is substituted with a netto 
variometer: 
 
   a

Netto Ideal dynV V w (5.10)− =
 
The ideal variometer and the total energy variometer (resp. the 
netto variometer) must show the same time behavior to make 
the signals comparable. 
 

Conclusions 
 The question raised here is in what way dynamic effects 
can contribute to the improvement of the performance of a 
“normal” soaring flight.  One can try to make model assump-
tions of atmospheric air flows that are as close to reality as 
possible, for which the optimum flight paths then can be calcu-
lated.  A truly satisfying clarification, however, may be only 
achieved in practical flights.  To achieve this, there must be at 
least the possibility to measure the dynamic energy component 
in the sailplane.  The creation of an “ideal variometer” would 
be desirable because it would not only provide you with an 
impression of the dynamic changes of energy but would also 
give a true picture of the distribution of the atmospheric up-
drafts and downdrafts. 
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Figure 1   Vectors of velocity. 
 

 
 
Figure 2   Wind shear during landing approach. 
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Figure 3   Optimization problem for optimum cruise speed.
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Figure 4  Optimum straight-line flight through an extended updraft region. 
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Figure 5  Optimum straight-line flight through a narrow thermal. 
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Figure 6  Optimum straight-line flight through a wide thermal. 
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