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1 ABSTRACT

We solve for optimal combinations of glide speeds and
crabangles thatminimize the glide slopeatanarbitraryangle
to the wind along a constant course heading,. In this general

case glide slope minimization is posed as a variational prob-
lemwith bothgraphicaland numerical solutions. The graphi-

cal solutions are obtained by 'mnhem plotting of the along-
course component ofthe g lide polar for any constant cross-
wind component. ‘The numerical solutions are obtained by
sceded iterations with a Taylor series expansion about an
analyticsolutionin the asymptotic limit of a small crosswind
component, These solutions reveal that speeds-to-fly in se-
verely eblique winds can actually increase with increasing
tallwind component in order to avoid glide slope degrada-
tion from excessively large crab angles. Furthermore, indi-
cated speeds-to-tly decrease with altitude in the absence of
wind gradients. ol (asin al\mrplmr‘ and insulation layers).
On the other hand, if wind gradients are present aloft and
obey Long's solution then l[h{]-. ed speeds-to-fly remam
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invariant with altitude. Within a lee wave field, it is shown
that the glide slope between any two points ism inimized by
an orthogonal series of constant course glides proceeding
crosswind through rebmnu ofliftand directly withoragainst
the wind through regions of sink.

The solutions were also used to compute the flattest pos-
sible glide slopes that may be achieved across the spectrum
of production sailplanes under a variety of extreme condi-
tions. It was found that larger aspect ratios and low wing
loadings have an increasing advantage with increasing
tailwind and diminishing crosswind component. However,
this advantage is greatly diminished with increasing
headwind and crosswind components. Lipl:-ed to-flyandalong
course speeds segregated according to wing Iu.ldi.l‘uk_, with
tailwind and weak crosswind components, but varied in-

versely with wing thickness for oblique headwings and
direct crosswinds. The practice ofbal Iabhng wasshown tobe
adm}f\t.lbcmh for all oblique headwinds, direct crossw inds,
and even in strong oblique tailwinds.




IINOMENCLATURE

A, = wing area, ft

A B, =flight path way points

A'B',G = flight path way points

a,b,c = glide polar coefficients at altitude

&, B, & = glide polar coefficients at sea
level

& = quadratic drag coefficient

gt ™ quadratic induced drag coefficient
O = quadratic profile drag coefficient
c,, = quadratic 1ift coefficient

ey e resolvent cubic parameters for

iterative general solution

d,. £, =resolvent cubic parameters for
weak crosswinds

K, = profile drag factor

K, = induced drag factor

K, = glide polar factor due to profile drag

K, = glide polar factor due to induced

drag

L/D = inverse glide slope

L/Dm = inverse glide slope due to speed-
to-fly

L/D(u=

U+ § U) = inverse glide slope due to speed-
to-fly errors

1 = wing cord, nautical mi.

= gross weight, Ib

integral index number

B = second-order coefficient for general
iterative case

=B
o

second-order coefficient for weak

Py =
crosswinds

a, = first-order coefficient for general
iterative case

dy = first-order coefficient for weak
crosswinds

R = Rossby radius of deformations, n.mi.

I = zero-order coefficient for general

iterative case

s, O

B

=

< Q

e i o T [a=} S oo TR

= zerg-order coefficient for weak
crosswinds

= air mass sink rate, kt

speed-to-fly altitude, kt

Il

speed-to-fly at sea level in still air,

kt

= indicated speed-to-fly, kt

= general speed-to-fly for nth wind
increment, kt

= speed-to-fly in weak crosswinds, kt

= horizontal component of glide
velocity relative to air at altitude, kt

= horizontal component of glide
velocity relative to air at sea level, kt

= stall speed, kt

= wind speed, kt

weak wind speed, kt

= vertical component of glide velocity

relative to air at altitude, relative

sinking speed in knots

vertical component of glide velocity

relative to air at sea level, relative

sinking speed in knots

= position along flight path relative to
any given way point

= wind angle relative to course line

= crab angle relative to course line

= profile drag exponent

= speed-to-fly error, kt

= wind speed increment, kt

= relative squared crosswind velocity
difference, kt

= minimum glide slope in still air at sea
level

= wave length, n. mi.

= density at altitude, slug/ £¢3
= density at sea level, slug/ F¢3
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IHIINTRODUCTION

The first treatment of the problem of the glide speed that
minimizes the glide slope in a moving atmosphere was due
to MacCready (1954 and 1982). The solutions have since been
referred toas “speed-to-fly.” MacCready’s original work was
valid for a convective atmosphere in which regions of rising
and sinking air translate horizontally with the wind. His
speed-to-fly solutions were thus independent of the wind
speed and determined uniquely by the rate of vertical air
mass movement and the glide polar in still air at sea level.

Subsequently, Reichmann (1975 and 1978) and Kuettner
(1985) considered the effects on glide slope minimization
when regions of rising or sinking air do not translate with the
wind over the ground. Such a condition is typically encoun-
tered in both hydrostaticand non-hydrostatic lee waves, see

>ill (1982). Kuettner considered only the cases of glides
directly with the wind. Reichmann presented a graphical
orthogonalization for “Kurspolaren” when the wind isat an
angle to the course heading. However, the tedious nature of
this approach resulted in only a few example illustrations,
with the complete family of speed-to-fly solutions and the
optimal crab angles remaining unresolved. Even so, some
striking departures from MacCready’s original findings were
uncovered by both authors in the case of a direct tailwind.
Speed-to-fly was found to be dependent on the wind speed
with the flattest glide slopes achieved for tailwinds at speeds
less than the MacCready speed-to-fly. Kuettner also consid-
ered the degradation in glide slope at high altitudes. He
concluded that the practice of ballasting to high wing load-
ingsid disadvantageoussince the reduced air densityathigh
altitudes has already effectively raised the wing loading
considerably. The increase in relative sinking speeds at these
higher wing loadings cannot be compensated in downwind
glides because slow speeds-to-fly are required,

Inthe present paper, the speed-to-fly problem is treated for
the general case of glides along constant course headings at
anarbitrary angle to the wind forany givenaltitude. Optimal
flight paths for crossing lee wavesare showntoresultfroman
orthogonal series of constant course glides flown crosswind
through regions of liftand along the wind throu ghregions of
sink. The orthogonal componentglides flownalong the wind
are governed by the classical speed-to-fly theory, see
Reichmann (1978). The crosswind orthogonal component
glides are a particular case of the general solution for an
arbitrary wind direction, as predominates outside the lee
wave field. Here speed-to-fly is posed as a variational prob-
lembased on theassumption that the wind field varies sﬁaw ly
over geophysicallength scalescharacteristicof lee waves and
Rossby waves. In Section IV a gra phical solution to the
variational problem is de_velopec% around the concept of a
“compositealong-course polar” developed from theori ginal
Kurspolaren concept, butexpanded toinclude computations
of the optimal crab angle. The full family of speed-to-fly and
optimal crab angle solutions, are then found in Section V by
seeded iterations of the transcendental form of the speed-to-
fly equation. The sensitivity of these solutions to variation in
windspeed, direction, air mass sink and flight level is exam-
ined in Section VI. The results are also used in Section VII to
explore the ca H,)a bilities and speed-to-fly requirements for a
wide range of production sailplanes in a number of critical
wave soaring situations.

IVFORMULATION

Consider glides performed at 1-g load factor across afield
ol lee waves insucha manner thata constant course heading
is maintained between any two arbitrary points (A,B), in an
Eulerian frame. Letthe course heading connecting (A, B) be at
an angle o to the wind whose speed 1s v as shown in Figure
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L.Ifthe horizontal component of the glide velocity relative to
the air is u, then it must be directed at some crab angle B in
order to maintain a constant course heading between (A,B).
The crab angle is thus given by:

B =sinti-i{v/ulsine] )

While traversing the lee wave field, regions of rising flow
(Lift) will be encountered along the upwind phases of the lee
wave crests, and descending flow (sink) along the downwind

hases. Let the vertical velocity component of the air mass be

, which shallbe taken as positive in the downward direction
in an Eulerian frame. If the vertical component of the glide
velocity relative to the airis w (positive downward), then the
inverse glide slope (L /D) with respect to an Eulerian frame
such as the ground will be:

T P R e ey
r/p - vcosa - u casf | veose +4u visinte 2
w+ 5 w o+ 5

Here vsinu is the crosswind component; veosa is the
tailwind component; and ucosp is the along-course compo-
nent of the ghde velocity.

CONSTANT COURSE STRATRGIES WITH LEE WAVES
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FIGURE 1. Schematic of cross country wave flights

Suppose a lee wave field lies between the two arbitrary
points (A, B). The lee wave field structures the air mass sink
rates in alternative parallel bands having high cross stream
coherence asdiagrammed schematically in Figure 1. Because
of this feature, an orthogonal series of constant course glides
yields the minimum g]_ide slope between any two points
(A,B), that are separated by some streamwise excursion. It is
clear from inspection of equation 2 that straight line glides
with a direct tailwind, o = 0, give the maximum possible L./
D (or flattest glide slope) when entering the lee waves along
(A,B') or when traversing the lee wave field along (A’,B).
These two glides can be joined by a direct crosswind glide at
constant course heading (B',A"), utilizing lee wave lift to
achievean infinite 1./ when S — -w. However, sufficiently
long crosswind glidesin uninterrupted lift suchas (I3, A" are
notalways possible. Variations in thealignmentand widthof
wave generating mountains often destroy the necessary
cross stream coherence of the lee wave field. If the ultimate
goal is significantly far downwind, say G in Figure 1, then




skewed constant course glides such as (B,GG) will become an
inevitable part of cross country strategy.

The problem of optimizing glidesskewed atanangle to the
wind, such as (B,G) in Figure 1, appears to have been first
been done graphically fora few selected casesby Huth (1963)
with subsequent elaborations by Reichmann (1975). This
method involves a vector projection of the glide polar along
the course line, (B,G) for a given crosswind componenl,
vsing. This transforms the glide polar in still air, see Appen-
dix1,intoarelationbetweenavertical componentof theglide
velocity, w, and the along-course component of the glide
velocity, ucosp, toyield the “Kurspolaren,” or “along-course
polar.” Figure 2a gives examples of a number of these along-
course polars for a practical range of crosswind components
encountered in wave flights. The crosswind component re-
mains constantover eachofthe along-course polars. The case
of a zero crosswind component corresponds to the still air
polar derived in Appendix 1. However, the crab angle, 8
varies continuously along each of the curves in Figure 2a.
Along-course polars like Figure 2a can only resolve the crab
angle after projecting from a given point along a line of
constant sink rate, w, to the corresponding point on the still
air polar in order to determine the glide speed, u; and then
invoking equation 1 to calculate p.

To obtain a simultaneous graphical solution for both the
speed-to-fly and the optimal crab angle in a glide skewed
relative to the wind direction, we introduce a new type of
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FIGURE 2: a) Along-course polars of a Nimbus IIb for
constant crosswind components. The zero crosswind com-
ponent (fine-solid) corresponds to the still air polar;
b)Composite along-course polars of a Nimbus IIb for
constant crab angles., The zero crab angle curve (fine-
solid) corresponds to the still air polar,

along-course polarin Figure 2b. Here the sinking speed, w, is
calculated as a function of the along-course speed, ucosp, for
constant crab angles. Therefore, the along-course polars in
Figure 2b can only satisfy the constant course heading condi-
tionset forthinequation 1if the crosswind component varies
continuously along each curve. By themselves these are not
particularly useful curves until combined with those in Fig-
ureZatoyield the “composite along-course polars” plotted in
Figures 3 and 4. Here, the along-course polars for constant
crosswind components are plotted as solid lines while the
along-course polars for constant crab angles are plotted as
dashed lines. The along-course polars for a vanishing cross-
wind component and crabangle, vsina=B=0are identically
the still air glide polar derived in Appendix 1.

To illustrate the methodology with this composite along-
course polar consider the problem of a skewed glide in the
absence of lift between points (B,G) in Figure 1 with a
windspeed, v =72 knots,and awind angle, ¢t =56". The wind
vector may therefore be decomposed into a tailwind compo-
nent, vcost =40 knots, and a crosswind component, vsing =
60 knots. According to equation 2, we offset the horizontal
axis of the along-course polar by the tailwind component,
veos indicated by the solid circle in Figure 3. The flattest
glide slope is given by a tangentline projected from the offset
of the tailwind component to the corresponding along-course
polar for a 60 knot crosswind component, asindicated by the
dotted line in Figure 3. The tangent point indicated by the
triangle is the along-course speed, ucosf} giving the flattest
possible glide slope for a 72 knot windspeed and 56° wind
angle. For the actual speed-to-fly, we note the sink rate
corresponding to this along-course speed and project along
a line of constant sink rate to the still air polar. This constant
sink rate projectionis indicated by the dot-dash line in Figure
3, while the corresponding speed-to-fly of 68 knots is indi-
cated by asquare. To find the optimal crab angle, simply find
which of the along-course polars for constant craL angle
{dashed curves) passes through the tangent point of the
along-course polar for constant crosswind com ponent (solid
line). In this case, that constant crabangle curve would beone
justto theleftof the 60° curve indicated in Figure 3, or 63°. For
clarity, the along-course polar for a constant 63" crab angle
has been omitted from Figure 3. If we consider the same
problem inanair mass sinking ata rate of 1.5 knots, Figure 4,
the tangent plotting procedure remains the same except that
the point of projection is now displaced below the horizontal
axisby 1.5knots. Thenew solution gives a fasterspeed-to-fly,
U = 76 knots, and a smaller optimal crab angle, JB =52°,

The graphical solutions for the speed-to-fly and the opti-
mal crab angle using the composite along-course polars are
useful for a few selected examples, and for understanding
how the characteristics of the still air polar influence the
particular nature of those solutions. However, this approach
ishighly inefficientand impractical for software applications
in real-time air data computers or for generating look-up
tables for a wide range of possible of windspeeds and direc-
tions. Moreover, the curves generated in Figures 3 and 4 are
based on the still air polar at sea level. Consequently, it is
necessary to generate additional sets of composite along-
course polars for each altitude regime, based upon the alti-
tude correction to the still air polar set forth in Appendix 1.
The only way to circumvent this complication is to equip the
sailplane witha non-altitude compensated variometer which
reads low with increasing altitude by a factorequal to Vp/p,
see Irving (1974). Then the indicated speeds-to-fly would be
equivalentto thoseat sealevel forany altitude. Asanalterna-
tive to these difficulties, we present the following numerical
variational solutions to the general speed-to-fly problem at
an arbitrary angle to the wind.

TECHNICAL SOARING
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FIGURE3: Composite along-course polars of a Nimbus b used to find the speed-to-fly and crab angle in a 72 knot oblique

tailwind blowing at 56 degrees to the course line.

ALONG-COURSE POLARS ( NIMBUS IIb )

10
!
!
i
9 4
PROBLEM:
70 kts WIKD SPEE a

a0 WIND ANGLE

= 40 kin TAILWIND COMPONENT F} I
2z
= 15 kir AIRWAST SINE RATH —
a0 ke CROSSWIND CONTONENT x
y E
JOLUTION:
4 -t B0 ks
4 44 kta ALONG COURSE SPEED | CEL
s 87 TCHAB ANGLE 5
B 76 ki SPEED-TO-FLY Thkis -
a p———
& ke
P AT
| LY kb
Ve b — b ——— [t} :ﬂ b
i an 41l a0 20 1] f\ m

TALLWINLD COMPONENT, v com g | Wia )

MASE SINK FATE, 3 wis }

Al

f = CRAB ANGLE
—— v gin a = CROSSWIND COMPONENT

S —

1y} it B0 ele] 100

50
ALONG=COUNSE SPEED, u cos f (kis)
HEADWIND COMPONENT ( kis )

PIOURED: Composite along-course polars ofa Nimbus Hb used to find the speed-to-fly and crab angle ina 72 knot oblique

ik

vined weathy TR knots of

VOLUME XVI, NO, 1




VNUMERICAL VARIATIONALSOLUTIONS

With equation 2 expressed in terms of equation 25 in
Appendix1, theinverse glideslopeisreduced todependence
on four variables, u, v, o, 5. Consequently, incremental
changes in L/D are expressed as:

AN dh

Now, each of the variables in equation 3 changes with incre-
mental changesin positionalong the flight path dxaccording
to characteristic length scales. The air mass sink rates vary
over distances comparable to the wave length, OfA/2r), of
the lee waves. The wind speed and direction vary over the
lowestmode lengthscales of theupperlevel storms, typically
the Rossby radius of deformation, O(R), as discussed in Gill
(1982). On the other hand, the horizontal component of the
glide velocity can vary over distances of only a few cord
lengths, O(nl), where n ~ 5 according to Basu and Hancock
(1978). Therefore, the relative sizes of the terms in equation 3
are:

GLLi FL/DY Gu L oy 2} (4
s gy = et = AN = = L
du ! dir dx 1| nij
o 2ILD) Y g = r:_‘iﬂ] (5]
dv dx 2
g AL/ Ba — dx (&)
= QUL G & Lx
=% on ox & q R‘,I
FLLID) gy o 205/ 93 de= 1} e (7
—a a5 ax “-{ O

In the atmosphere, R ~ O (100n.mi.), whereas A ~O(10n.mi.)
for hydrostaticlee waves or A ~O(1 n.mi.) for non-hydrostatic
lee waves. These are immense compared to the wing cord, 1.
Therefore, changes in L/D with respect to wind speed,
direction, and air mass sink rate are negligible compared to
those with respect to changes in glide speed over any incre-
mental distance dx. Hence, the speed-to-fly, U, which maxi-
mizes the L/D over the ground, is given to O(2rnl/A) accu-
racy by
_é?} ; -0 atu =0 (8

Equation8yieldsthe general speed-to-fly equation for glides
skewed relative to the wind, which may be written as

~al? - 2avll cosey¥ - v ginfa + (o v § ¢ 2avisinfal D

Tz~ vibsinle = 0 (&

i e
- vh cogsayl? - 2

The transcendental nature of the general speed-to-fly equa-
tion (equation 9) follows from the fact that speed-to-fly is a
function of the crab angle by way of equations 2 and 8, and
crabangleis,inturn, a function of speed-to-fly as required by
equation 1. Analytic solutions to equation 9 arise in the
asymﬁt_}oﬁc limit of an indefinitely small crosswind compo-
nent, U?> v'sin’e, for which the speed-to-fly u = U_is given
by:

oo+ ool + @l v .= 0

(10}

where Py, = 2v,ccaa

o= [-le + 8+ 20 Pr - b cosel 4]
ro = tvibsinta/al
NN 77
A Y dsin

The speed-to-fly equation thus collapses toanordinary cubic
equation for weak crosswinds, yielding the following solu-
tion:

8

s T T P e

['he remaining two roots of equation 10 are less than zero
(backwards flight) and are, therefore, not sensible. As a
particular case of equation 11, the speed-to-fly solution ina
directheadwind or tailwind (0 =0), which corresponds to the
graphicalresultby tangent plotting due to Kuettner (1985), is
found to be

(£ FlAZE) (43 egaie v 5 - baAtl ) {12

For a general solution to equation 9 a seeded iteration is
begun from the weak crosswind solution U_for some small
wind speed v = v_. With each iterative step n thereafter, the
wind speed is stepped incrementally by mgv. The numerical
compultations forany givenstepnarebased onaTaylorseries
expansion of (L - v’sin’a)'/? about the speed-to-fly solution
from the previous iteration, U = U . By this numerical
scheme, the general specd-to-fly equation for the nth itera-
ton is

[E N F S SV S (1
where:
-wi cosal :; m zav cosa (0D m YE)

P, = —— - — {14}

—a

cr5-Zartainie -

i {15)
Ty E - ERE AT

U,

-3 - avaosainTH?

wheren=1,23...,n= Uln_l - visinfopand v=v o+ ndv. Hence,
the general speed-to-fly solution for any given wind speed
and arbitrary o is given by

443

fr‘: | 2v cosa

i d (7
27 3

whered =(1/27)(2p’ -9p,q, +27x )it =(1/3)(3q -p° )in=
1,2,3.... Again, the bwo remaining roots toequation 13 areless
than zero and consequently have no physical si gnificance.

VINUMERICAL RESULTS

The general speed-to-fly solutions for arbitrary wind speed
and direction were computed between the 700- and 30(0- mb
levels by seeded iterations using cqlua tions 14-17. The com-
putations were based on an unballasted Nimbus TIb glide
polar according to A ppendix 1. The computational sw'&:cps;
were stepped in both the positive and negative wind direc-
tons using increments of dv = 1.0 knot. This procedure was
selected in preference tosome generaliterative searchroutine
because the speed-to-fly equation (equation 9) has multiple
roots and it was desirable to find cause and effect relation-
ships between speed-to-fly, optimal crab angle, air mass
movements, and altitude effects on the glide polar. The
speed-to-fly and optimal crabangle dependence onthewind
speed and direction is computed in Figure 5 for the 700- mb
level and in Figure 6 for the 300- mb level. These computa-
tions assume ne net vertical motion in the atmosphere, 5=10,
as would generally be the case during long glides between
wave generating mountains. Negative wind speeds corre-
spond to headwinds, whereas positive values denote
tailwinds. Positive crab angles denote deviations from the

TECHNICAL SOARING
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FIGURES5: a) Speed-to-fly in the absence of liftas a function of wind speed and direction at the 700-mb level, (10,000 ft MSL);
b) Optimal crab angle in the absence of lift as a function of wind speed and direction at the 700-mb level (10,000 ft MSLY;
c)Maximumobtainable L /D in the absence of liftasa function of wind speed and direction at the 700-mb level (10,000 MSL).

course line in the same sense as the wind angle (headwinds),
whereas negative crab angles deviate from the course line
against the wind angle (taillwinds). The fastest and slowest
speeds-to-fly arise from glides directly against and with the
wind (o =0), ['C‘)]_'}L‘LUVCIV The speed-to-fly in a direct cross-
wind (¢ =90") isasymmetric functionabout zerowind speed
and isslowerthanall other head wind casesand faster thanall
other tailwind cases. All remaining possible crosswind solu-
tions are intermediate belween these two extremes, with
small differences among oblique glides into the wind, but
significantly faster speeds-to-fly E‘}r Increasing crosswind
components with the wind. Except for direel crosswinds or
extremely oblique wind angles, o> 60° the maximum inverse
glide slopes apparently result from keeping the crab angle
small, less than (O(45°). [ ence, the speeds-to-fly during ob-
lique glides with the wind increase with increasing cross-
wind componentinorder tomaintain the course line without
resorting to exceedingly large crab angles.

From comparisons of Figures 5a and 6a it 1s interesting to
find that the indicated speed-to-fly (based on pitot-static
airspeed systems) varies with altitude for any given wind
speed and direction. This effect was not considered by
MacCUready (1954 and 1982). Generally, slower indicated
wlispreeds wre required at higher altitudes for any constant
non zero wind speed regardless of direction. In practice, the
validity of this staternent relies on the absence of a vertical
wind ﬂradmnt asistypicalofinsulationlaversaloft. Usually,
wind gradients are presentaloft, and many of these appmrtn
cbey lun:g_, s solution, see Gill (1982). If the lee-wave fields
uh{_\_, lLong's solution, then the momentum flux of the wind
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remains constant, and the wind speed will increase with
altitude as thesquare root of the density ratio, (f/p)'*. Under
conditions for Long’s solution, the indicated speeds-to-fly
and crab angles will remain invariant with altitude. This can
be deduced from Tigures 5 and 6 in which, for example, the
indicated speed-to-fly and crab angle in 60 knot windsat 700-
mbarecomparabletothose required in91.6 knotwindsat the
300- mb level.

Figures 5c and 6¢ show the maximum possible inverse
glide slopes (L/D) if exact adherence to speed-to-fly and
optimal crab angle is maintained. Clearly strong headwind
conditionsshould beavoided since the L/ D falls catastrophi-
cally from 47.7 in still air to less than 15 for the Nimbus ITb
with 90 knot headwinds at 300- mb. It is also apparent that
strong, crosswinds exert a severe degradation of the glide
slope in the absence of lift. Conversely, a 60 knot direct
tailwind at 700- mb or a 91.6 knot tailwind at 300- mb will
improve the L/D from 47.7 in still air to 92.7. /\"am, if a
vertical wind gradient is present which obeys Long's solu-
tion, then the maximum possible inverse ghdL slope remains
invariant with altitude. If on the other hand, an insulation
layerisencountered inwhich the winds donot increase with
altitude, flatter glides Up{—'ﬂ.dreadue\eni for alwgl\tsrltaliumu
and direction at lower altitudes. If it is necessary to fly in a
direct crosswind through an insulation layer, flatter glide
slopo%wn]lbu achieved athigheraltitudes for any giverwind
speed. This is due to the fact that higher effective w ing
loadings at higher altitudes are an advantage for sifuations
rt-zquir[hg penetration performance, as in a headwind or a
strong crosswind, buta disadvantage whenghding slowly at
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FIGURE 6: a) Speed-to-fly in the absence of lift as a function of wind speed and direction at the 300-mb level (33,000 ft
MSL); b) Optimal crab angle in the absence of lift as a function of wind speed and direction at the 700-mb level (10,000
ft MSL); ¢) Maximum obtainable L/D in the absence of lift as a function of wind speed and direction at the 300-mb level

(33,000 ft MSL).

minimum relative sinking speeds with the wind, see Jenkins
and Wasyl (1990).

Tigure‘; 7a and b show computations of speed-to-fly and
optimal crab angles for the case of quartumgﬁcadwm sand
tailwinds at the 500- mb level when vertical airmass move-
ments are encountered. Contour plotsare shown for particu-
lar airmass sink rates of -1.0 £ 5 < 8.0 knots, as would be
typically encountered while traversing mountainsin fields of
lee waves. Computations for anairmass rising faster than the
aircraft’s minimum relative sinking speed are not possible
because a state of perpetual motion is achieved at the start of
the seeded iteration, v=v_forwhichthe problcmhas notbeen
correctly posed by equatmn 8. The problem in this case
becomes one of maximizing climb rate for which the ':peed—
to-fly is U—u . Otherwise, the speed- to—ﬂ} solutions in Fig-
ures 7a and b’ requlre one to speed up in sinking air and to
slow down in rising air, similar to MacCready theory. How-
ever, unlike MacCready's original results, the speeds-to-fly
forany givenairmasssinkratearedependentupon the wind
speed, requiring faster glides foraheadwind component and
slower glides with a tailwind component. Rebard less of the
airmasssinkrate, speeds- lo—ﬂ} instrongq uartering tailwinds
tend toincrease slightly with increasing wind speed inorder
to prevent glideslope degradations rtqultm;;J from exces-
sively large crab angles, ({45°). This result is a modification
to Kuettner’soriginal downwind strate Y- Instrong quarter-
ing headwinds with a rapidly sinking air mass one }umf», in
Figure 7a that rather large speeds-to-fly, ({200 knots), are
required that exceed the structural load limits of most sail-
planes. In 1 knot rising air with a quartering tailwind, the
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speed-to-fly is less than best L/D speed for still air.

Figures 8a and b show the effect of vertical air mass
movements on speeds-to-fly and optimal crab angles in
direct crosswinds at the 500- mb level. In strong direct
crosswinds with rapidly sinking air, the speeds-to-fly arc
significantly less than the corresponding quartering hea dwind
cases in Figure 7a but also significantly greater than the
¢ orret»pondmgj tailwind cases. For weak direct crosswinds (v
<30 knots} there is little change in speed-to- fly with increas-
ing or decreasing wind speed, since most of the compensa-
tion is done with the crab angle. Unlike all other cases
considered, the optimal crab angle for strong direct cross-
winds (v = 60 knots) does indeed exceed 45 7 in non-sinking
air.

Figures 7c and 8¢ show the maximum obtainable inverse
glide slopes with vertical air mass motion in quartering
headwinds and tailwinds and in direct crosswinds, respec-
tively, at the 500 mb level. The computations are based on
exact adherence to speed-to-fly and optimal crab angle ac-
Cordmgj fo Figures 7a, 7b, 8a and 8b. One finds that alm\ Iy
rising air, S = -1 knot, yields impressive L /D tor both « J]umv
quarlumu tail winds (1./12 about 190) as well as '\L-JI\
crosswinds (L/D ~140). However, 100 kU quartering
headwindsdegrade the L./ Dto < 1 regardless of the vertical
airmassmotions, see Figure 7e In fact, the inverse glide slope
in this case is almost as bad for 8 knots of air mass sink as i
would be for non-sinking air. The degradation in L/D for
strong direct crosswinds is only slightly less, see Figure Sc,
Forweak quartering headwinds/tailwinds and direct cross-
winds, any rateof sinking of the air massexertsa pronounced
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FIGURE 9: a) Speeds-to-fly for production sailplanes in quartering winds without lift, S + 0 at the 500-mb level (18,000 ft
MSL). Calculations are based upon unballasted wing loadings with a 200 Ib pilot and chute; b) Optimal crab angles for
production ballplanebm quartering winds withoutlift, 5 =0at the 500-mb level(18 000 ft MSL). Caleulations arebased upon
unballasted wing loadings witha 200 1b pilotand chute; ¢) Maximum obtainable L /D for production ballplanes inquartering

winds without lift, 5= 0, at the 500-mb level, (18,000 ft MSL). C

a 200 1b pilot and chute.

reduction in L/D compared to the case 5 = 0. Most of this
performance loss occurs during the first few knotsofairmass
sink. Very little additional loss occurs for 5 = 4 knots.

These solutions were verified in test flights by Jenkins and
Wasyl(1990) in which knownspeed-to-fly errors were flown
bebween the 700- and 300- mb levels. The loss in /12 due to
any givenspeed-to-fly error was found to be greater at lower
altitudes for both quartering tailwinds and direct cross-
winds. Furthermore, flying too slowly produced a greater
degradation in L/D than flying too fast. Speed-to-fly errors
had a greater adverse impact in quartering tailwinds than in
direct crosswinds. However, in either case, the speed-to-fly
errors resulting from flying too slowly diminished the L/D
by 15 points or more. Therefore, speed-to-fly errors which
accumulate over long cross country wave flights represent
significant glide slope degradations which may result in
unnecessary and potentially dangerous losses in altitude or
distance.

VIICOMPARATIVE ANALYSIS

lere, we invoke the numerical variational solution from
the Numerical Variational Solutions to explore the perfor-
mance capabilitiesand speed-to-fly requirements of produc-
tionaircraftacrossaratherbroad spectrum of wing spans. At
the upper limit of that spectrum we consider the example of
the Schempp-Hirth Nimbus III, with a wing span of 24.5 m
(80.3 ft.). The lower limit is bounded by the Sc L\-’\TLIZQI 1-26,
whosewingspanisonly 12.2 m (40.0ft.). In the middle of our
size spectrum lies the rather diverse band of 15 meter and
standard class racers. We shall bracket this band with the
Rolladen-Schneider [.5-6 for the upper imitand the Grob 102

12

“alculations are based upon unballasted wing loadings with

for the lower limit. To further resolve the size spectrum, we
include caleulations for the Schempp-Hirth Nimbus [1b (20.6
m or 66.6 ft. span), and the Schweizer 1-36 (14.1 m or 46.2 ft.
{mn) A comparative summary of leadmg order physical
characteristics for these aircraftis given in Table 1. Typically,
we find that longer wing spans render higher aspect ratios.
We shall discuss our comparative calculations of these
arrcraft under two distinct sets of circumstances: 1) oblique
downwind orupwind glidessuchas(B,(3) inFigure 1;and 2)
directcrosswind glidessuch as A’, BY) in Figure 1 performed
intheabsence of wavelift. Comparisons for glides performed
directly with or against the wind such as (A,B") or (A",B}) in
Figure 1, are adequately presented in Reichmann (1975) and
Kuet-lner (1985).
A) Oblique Downwind and Upwind Glides

Figure 9 gives calculations for the speed-to-fly require-
ments and maximum obtainable inverse glide slopes in the
absence of lift (5=0), at the 500- mb level in quartering
headwinds and tailwinds. The calculations are based upon
the quadratic approximation to unballasted glide polars for
cach sailplane in our size spectrum, as derived in Appendix
I.Generally, we find thatflatter glide slopes, and thus, greater
cross country distances, are achieved with higher aspect
ratios, see Table 1. This porformana‘ advantage improves
with either increasing tailwind component or diminishing
crosswind component. THowever, the ultra- hlbhaapt ctratios
(28-33) of open class sailplanes appear to give up a slight
performance adv antage to the more moderate aspect ratios
(21-23) of 15 meter racing class sailplanes in the presence of
strong headwind ¢ omponents. Thethreshold wind speed for
this 15 meter dominance increases thht yw ith inc reasing

TECHNICAL SOARING
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1| SAILPLANE WING ASPECT MAXIMUM MINIMUM ASPECT MINDMURM BEST
MODEL SPAN RATIO AIRFOIL WING WING SINK L/D
THICKNESS LOADING LOADING RATE SPEED
m NT/ ny 2 NT/ nf
‘ (F0) 0 (Ib/ft2) (1b/ft2) (kts) (kts)
f__h ! I ; )
Nimbus Il | | 243 32.3 14.4 272 8.43 0.85 43
(80.3) (5.69) (0.176)
Nimbus [I 206 28.6 17.0 310 [ 108 | 0595 50
. (67.6) (6.47) (0.226)
L5-6 15.0 3o 14.0 309 I14.46 LT 53
(49.2) (6.46) (0.302)
Grob 102 150 | 182 198 273 15.03 1.26 50
._ | (49.2) _3- (5.71) (0.314)
! }
1-36 1| 14.1 15.15 16.3 242 bl 15.94 [.30 42
L (46.2) (5.05) || (0333 |
; i
1-26 12.2 19.0 ol 210 20.57 1.72 43
‘ (40.0) (4.38) (0.438) f
— L B |

TABLE1: Physical and performance characteristics of selected production sailplanes.

obliquity, ranging from 50 knots fora 30 d egree headwind to
about 60 knots for a 60 degree headwind. For oblique
headwinds in excess of these thresholds, the maximum in-
verse glideslopes achieved with low aspect ratios (Less than
18), are remarkably poor, and polentia_lfy dangerous if land-
ing sites are not withinsome distance of the same order as the
available altitude.

Itis interesting to examine the tendencies of speed-to-fly
andoptimalcraba ngles whichoccuracross the size spectrim
duringoblique up wind and downwind glides in the absence
of lift (5=0), see Figure 9. In strong quartering headwinds,
thereisonlya 10 knotdifferenceins peed-to-fly across the size
spectrum, with the aircraft havin g the thinnest wings requir-
ing the highest speeds and smallest crab angles, sec Table 1.
Remarkably, the speed-to-fly and optimal crab angles segre-
gateinto two distinct groups for weak quarteringheadwinds
and for all quartering tailwinds. This segregaltion seems to
occur inresponse to wing loading, with the low win g loading
aircraft (less than 6 Ibs/ft’) forming a low speed, high crab
angle group. Segregation appears to be totally independent
of aspect ratio or maximum obtainable inverse glide slope,
see Table 1.

B) Direct Crosswind Glides

Some of the trends observed in oblique glides are found to
persist in direct crosswind glides. The wind speeds for par-
ticular behavior are slightly different. In Figure 10a, we
caleulate size variation in the maximum obtainable inverse
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glide slopes for direct crosswinds at the 500 mb level in the
absence of lift (S=0). For weak to moderate crosswinds (less
than 60 knots) therc exists a progressive improvement in
glideefficiency withincreasing aspect ratio. As the crosswind
velocity exceeds 60 knots, there is a gradual reversal of this
trend as the ultra-high aspect ratio performance is succes-
sively exceeded by the perflonnam:c of more moderate aspect
ratios. Above crosswind speeds of 70 knots, the 15 meter
racing class exhibits a slight advantage over the open class.

The along course speeds realized by exact adherence to
speed-to-fly and optimal crab angle are calculated in Figure
10b for direct crosswinds at the 600 mb level. These are the
ground speeds that are achieved at the maximum inverse
glide slopes calculated in Figure 10a. For weak to moderate
crosswind speeds (less than 50 knots) we find that the along
course speeds segregate roughly into two groups accordin £
to wing loading. Aircraft whose load ings are less than 6 1bs/
ft* tend Lo group together at relatively slower along course
speeds than those greater than 6 1bs /{t, regardless of aspect
ratio or maximum inverse glide slope. Instrong direct cross-
winds (greater than 80 knots), the along course speeds are
ordered according to the relative win g thickness, see Table 1.
Againthisorderingisirrespective of maximum inverse glide
slope. The minimum along course s peed at the transition to
strong directcrosswind speeds (50 to 70 knots) accurs where
the craban gle solution begins to flatten, see figure 8b. conse-
quently, further corrections to maintain course headi ng with
increasing wind speed are accomplished by flying faster,
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FIGURE 10: a) Maximum obtainable L /DD for production
sailplanesindirect crosswinds withoutlift, 5= 0, at the 500-
mb level (18,000 fi MSL). Calculations are based upon
unballasted wing loadings with a 200 1b pilot and chute; b)
Maximum obtainable along-course speeds for production
sailplanesindirect crosswinds withoutlift,5=0,at the 500~
mb level (18,000 ft MSL). Calculations are based upon
unballasted wing loadings with a 200 Ib pilot and chute.

giving a subsequent increase in along course speed. In the
regime of weak to moderate crosswinds (less than 50 knots)
the speeds-to-fly remain relatively constant, such that subse-
quent increases in windspeed are compensated with in-
creasesin crab angle and corresponding reductions in along,
course speed.

C) Discussion

The results of the comparative analysis can be understood
intermsofthe general polarequations, (21)-(23) in Appendix
L. Tor any given wind field, individual aircraft performance
is determined by an induced drag term (proportional to K4)
which dominates at low speeds and a profile drag term
{proportional toK3) which dominates athigh speeds. Speed-
to-fly solutions with tailwinds and weak crosswind compo-
nents are found to exploit the low speed portion of the glide
polar where induced drag effects are the primary constraint
on performance. Arguing from classical lifting line theory,
the factor K4 isinversely proportional to the aspect ratioat the
lowest order approximation, Van Dyke (1964). the induced
drag is also linearly proportional to the wing loading, sce
equation (23). Therefore, the glide efficiency atlow speed is
governed primarily by the ratio of the w mg loading to the
aspect ratio, termed “aspect wing loading” in Table 1. We
find that the maximum inverse glide slope with tailwind or
weak crosswind components progressively increases with
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decreasing aspect wing 1oadmba Consequently, the critical
dL‘ngﬂ LOI’lHld era h(_)l'l‘h f(n I]’ld\l[lll/lﬂb CrOSSs LDLU.‘LU.F\- LI l“tc‘iﬂk (4
in either oblique or direct downwind wave flights should be
focused on rrmximizing aspect ratio while maintaining the
lowest possible wing loading,.

The aebrebatmn of qpeLd -to-fly and along course speed
according to wing loading for tailwind or weak crosswind
components is also a low speed phenomena dominated by
induced drag effects. The quest for hibher .1‘;pet,t ratios to
minimize induced drag also tends to increase wing loading,
espedially in the absence of advanced composites (N imbus
ITb and Grob 102) or under the constrain of a fixed wing span

(LS-6). The polar coefficients (a,b,c) are altered by the wing
loading according to equation 24 such that hl&h&:‘l w mb
loadings give hi gher glide speeds over the entire polar.
Higher glide speeds in the low speed portion of the polar in
turn diminish the induced drag term in equdtmn 21 and
thereby improve glide efficiencies. Therefore, the high wing
loading aircraft must fly faster to achieve maximum effi-
ciency in the low speed portion of the polar. This is reflected
in the results in 'l'alf?le 1 where the high best L./ speeds are
found to correlate with high wing loadings.

In strong headwinds and crosswinds, the speed-to-fly
solutions require utilization of the high speed portion of the
polar. Here the profile drag term in equation (21) controls
Eerformancc characteristics. Since the induced drag term

ecomes small, the aspect ratio exerts a minimal favorable
effect. Instead, the wing thickness becomes the conltrolling
length scale in the profile drag factor, K1, see Van Dyke
(1964). The degree 0}) sophistication of the airfoil technol ogy
m maximi/inb rtheextentoflaminarboundarylayersalsohas
an important effect on the size of the profile drag exponent.
If the Loundqrv layers can be maintained, laminar over the
entire airfoil, then the profile drag exponent approaches the
theoretical maximum of 1/2 and the profile drag contribu-
tions to the sinking speed increases only as the 2.5 power of
the glidespeed. If, on the otherhand, the boundary layersare
everywhere turbulent over the airfoil, then the profile drag
exponent approaches 1/5 and the profile drag influence on
the sinking speed grows more rapidly, asthe 2.8 powerof the
glide speed. In addition to these airfoil factors of thickness
and shape, the profile drag term inequation 22 also decreases
with increasing wing loading. Therefore, the loss of the
performance advantage of open class sailplanes in strong
headwind and crosswind components is due to a combina-
tionoffactors: 1) they arederiving a minimal advantage from
their highaspectratios, while; 2) they are suffering from thick
airfoils necessary for adequate bendmb st renglh at high
aspectratios (NimbusIIb); or 3) theirwing loading is too low
(Nimbus I1I). Clearly, the third factor could be corrected by
ballasting. Consequently, for crosswind wave flights or for
speed triangles where legs must be flown into the wind, the
leading order design criteria is a thin, modern airfoil (T_S—(ﬁ)
whichemploysadvanced pressurerecoverybucketsorbound-
ary layer control to minimize profile drag.

To determine ballast effects in severely ubliqw_ winds we
calculatein Figure 11 the maximum obtainable inverse glide
slopes at minimum wing oadmg% with a 200 Ib. pilot and
parachute versus those at maximum certified Brossw m[,ﬂht
The calculations are performed for openand 15 meter rac m;ﬁ
classexamplesgliding inthe > absence ofliftatthe 500 mb level
with winds blowing at 60 degrees across the course line.
Naturally ballasted Lonflgu_ratlons achieve higher inverse
glide slopes than those which are unballasted when flying
into a headwind (Dmponcnt The 15 meter dominance into
strong headwinds is still present, but at a much higher
threshold windspeed (80 knots) and to a greatly diminished
degree. Since both the Nimbus Il and LS-6 have comparably
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thin wings, this strong head wind advantage of the 15 meter
examf]e is probably due to the slightly higher maximum
wing loading. The most surprising resultis the performance
advantage realized by ballasting in sirong oblique tailwinds
inexcessof 50 knots. This occurs when required speeds-to-fly
begin to increase to avoid excessive crab angles, see Figures
5and 6. Atthese higher speeds-to-fly, the profile drag termin
Equation 21 becomes large and ballasting then provides a
reductioninsinkingspeed and, hence, improved glideslope.
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FIGURE 11: Maximum obtainable L/D for production
sailplanes with and without ballast in severely oblique
windswithoutlift 5=0, atthe 500-mb level (18,000 ft MSL).
Unballasted calculations are based upon factory claims of
empty weight plus a 200 Ib pilot and chute. Ballasted
calculations are based upon maximum certified gross
weights.

CONCLUSIONS

From the preceding results, we conclude thatcross country
wave flights may be optimized by the following selection of
tactics and equipment:

1) Speed-to-fly during glides skewed relative to the wind
by less than 60" requires flying faster through sinking air
or into headwind component and flying slower through
rising air or with a tailwind componentsuch that the crab
angle doesnotbecome excessively large, less than 0(45° ).
2) bpeed-to-fly in severely oblique winds (wind angles
greater than 60°) requires flying faster through sinking
air or with increasing wind speed and flying slower
through rising air or with decreasing wind speed, using
crab angles that may exceed 45" for the case of strong
wind in a non-sinking air mass.

3) Indicated speeds-to-fly decrease with altitude in the
absence of wind gradients aloft (insulation layers).

4} Indicated speeds-to-fly remain invariant with altitude
when wind gradients aloft satisfy Long’s solution.

5) Maximum L/Dwith any given tailwind componentin
an insulation layer is achieved at lower altitudes.

6) Maximum L/Dwithany given headwind component
or any given direct crosswind in an insulation layer is
achieved at higher altitudes.

7) Speed-to-fly errors resulting from flying too slowly
yield the greatest losses in /1),

8) Losses in L./ for any given speed-to-fly error are
greater at lower alfi tudes.

9 Highaspect ratiosand low wing loading progressively
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increase the maximum obtainable L./ 1> with increasing
tailwind and diminishing crosswind components.

10} Thin airfoils and high wing loadings yield the flattest
glide slopes with increasing headwind and crosswind
components.

11) g‘ﬂlaetmg is advantageous in oblique headwinds,
direct crosswinds and strong oblique tallwinds.
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APPENDIX 1: Derivation of the Quadratic Glide PPolar

The vertical and horizontal components of the glide veloc-
ity relative to the air mass are related by th{,éjhdc polar at sea
level in still air. This relation can be posed from the usual
assumption that the total drag is a lincar combinalion of
profile drag and induced drag:

, Academic,

, Vieweg,

€ Lot Ty 015

ecause of Reynolds number dependence, the profile drag
coefficient is notconstantbut will vary with the glide velocity
in still air at sea level 4 according to
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where the factor K is a function of wing aspect ratio, twist,
taper and aeroelasticity. Based upon a drag formulation by Clearly, the aircraft with the highest glide efficiencies are
equations 18-20, the glide polar at sea level may be written as those having the smallest absolute values of polar coeffi-
cients.
B = (S E) 0= K007 + (K70 121
K, o= (pagk) fizm 2
K,o= {2m,) Figay) (23}

If we expand equations 21-23 in a Taylor series about some
optimal speed-to-fly in still air, it = U then the glide polar is
quadratic to second order according to

Bt (50 - &0° + B+ 2
where

g= (1 - yrin -y {2,/ 00

5= (3 -y &80T - (kA - 208

&= K5I (5 /0 + 40° - B

Here 4, and ¢ are based on the air density at sea level. We
may then correct the quadratic glide polar in equation 24 to
any altitude where the air density is p by taking

wo=aul + by v oo (23)
a = §ipipyrt (26)
h=5 127)

o= alpip)? {28)

A comparison is shown in Jenkins and Wasyl (1990)
between the quadraticapproximationaccording toequation
24 and measured glide polar data for a Schempp-Hirth
Nimbus IIb, taken from Johnson (1977) and corrected to sea
level. The values for the sea level polar coefficients that result
from this fit are J

NIMBUS I1t; £on HiOTTEIER ket (29) ]
£ = -n.1106912 (300
&= 3.364157 k¢ {31

Corrected glide polars for the 700-, 500- and 300- mbaltitudes
are also shown in Jenkins and Wasyl (1990). The maximum
inverse glide slope of 47.7 were found to remain unchanged
with altitude for still air. The deformation of the polar at
altitude is equivalent to increasing the wing loading by
factors of 1.20, 1.42 and 1.84 for the 700-, 500- and 300- mb
levels, respectively.

The quadratic approximation applied to published flight
test data from Relladen-Schneider (1987) and Johnson (1977,
1982a, 1982b and 1984) yields the additional sets of sea level
polar coefficients for the remaining aircraft discussed in
section VI
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