STOCHASTIC MODELS OF
THERMAL CONVECTION:
AN EXTENDED MCCREADY
THEORY AND A
SIMULATION TOOL

by Rudolf Mathar, Germany
Presented at the XXIV OSTIV Congress, Omarama, New Zealand, 1995

Abstract

Classical McCready theory is based on a determinis-
tic model. Due to uncertain information during a cross
country flight this seems to be rather questionable. The
present paper deals with stochastic models which are
more appropriate to describe realistic convectional pat-
terns. Ina first step the classical theory is extended to the
case that the intensity of the next used lift can be charac-
terized by a random variable A. The optimal speed ring
setting leading to minimal expected time thenis1/E(l/
A), where E denotes the expectation. As a full stochastic
model, including both random intensities of ups and
downs and their extension, we suggest a Markov jump
process. Anoptimalstrategy is unknown for this model.
However, asimulation tool has been developed to com-
pare the efficiency of different tactics under probabilis-
tic convection profiles of the above type.
L. Introduction

McCready’s theory was one of the starting points in
the development of analytical models to support tactics
of glider pilots. However, this theory isbased onarather
simple deterministic model. We feel that a stochastic
model is more appropriate, and closer to reality, since
the information about lift intensities and distances be-
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tween lift during a cross country flight is uncertain. In
this paper we introduce models of increasing complex-
ity to describe the random nature of convectional pat-
terns. The starting point is an extension of the classical
assumption of constant lift intensity. This admits an
explicit solution, easy enough to be implemented in
forthcoming electronic variometer software. As a more
advanced model a Markov jump process is suggested.
We cannot offer a full analytical solution, but instead
introduce a simulation tool to compare the efflciency of
different gliding strategies.

Stochastic models concerning the distance between
subsequent lift, and the risc of an outlanding vs. the
speed of the glider have already been considered in [1].
We thank Martin Simons for having brought our atten-
tion to this nice paper.

Forreferencing purposes wesetoutto describebriefly
the basics of McCready’s theory. A glider is flying at a
certainaltitudeh (=1000m, say), thereisalift of intensity
a at a certain distance d, and there are no up- or
downwinds in between. Without loss of generality we
may normalize d = 1 (otherwise d would cancel out in
subsequent ratios). The question is, which speed has to
be chosen by a pilot in order to reach altitude h again

113




a+ p(s)

minimize ——

over the speed s . (2)

times: glide: t;

FIGURE 1. The glide and climb path.
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A solution of this problem is ecasily
derived from the polar curve. Find the
tangential point at p(s) for the line origi-
nating from (0, a) (see Figure 2). If the
4 corresponding speed is applied during
the glide phase, this resultsin the minimal
amounl of time to cover distance d and
climb back to the original altitude. These
are the basic ingredients of classical
McCready theory; equation (1) allows for
an extension to a stochastic model as is
derived below.,

I1. Random Lift Intensity
Usually a pilot cannot be sure about

=

the intensity of the next lift he uses to

climb. This uncertain knowledge may be
modeled by a random variable A, de-
scribing the amount of upwind of the
next lift. Forinstance, a discrete probabil-
ity model of the following type could be
. suitable fora certain thermal pattern. The

p(s) 1

FIGURE 2. The polar curve and its tangent.
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after minimal time. He needs time tl toglide and time t2
to climb back to his original altitude (see Fig. 1). On the
other hand, we must consider the performance of the
glider, represented by its polar curve p(s) (see Fig. 2).
When the glider is flown at speed s, this results in a sink
rate of p(s) (in m/s). The following equations now lead
to the relevant optimization problem.

i =

fl'p(.‘)‘): =iz a

The first equation is obvious, the second one ex-
presses the fact that the total height lost during gliding
equals the height tobe gained when climbing. Thus, the
total time is

—

pls) _ a+p(s)
t=t +1p = -+ . - [’U

S$-a S-a

tn

Sincea fsaconstant, it may be canceled in the numera-
torabove withoutaltering the minimizinyg speed. Hence,
we end up with the following problem
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accordingly describes the random lift intensity. In this
case the probability that the climb rate is a value be-
tween c and d (m/s) can be calculated as

o

Ple<A<d)= / Ne Mdr, forall0<e<d.
¢
Let E(A) denote the expected value of A. By thestrong

law of large numbers this is the value one would observe
as the arithmetic mean over many measurements of
independent lift intensities following the same random
law. For distribution (3) the expectation is given by

F{d) = 005-05+02-1.0403-15+:03-204+01 25+0.05-3.0 = 1.675, (5}
whilst in case of (4) we have
b 1
E{d} = f e Mdr =
A A

Revisiting equation (I) under the present stochastic
model, the optimization problem reads as to minimize

% A 5 ~ A -

. A4pls) 1 pls) 1
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The total time T is now a random variable itself,
which cannot be minimized uniformly.
Instead we minimize its expected value, vielding
. psm ol o LR ol
min E(T) = min (; + = L(A}), (6)
because of linearity of the expectation. Abbreviating b =
E(1/A) we get from (6) via
14 b-p(s)

min —————= = mnin
¥ & Ll

1/b+ p(s)
s-(1/b)

after cancelling the constant 1/6 in the numerator, the
problem
1/t
min M . (7)

5

The solution is determined in exactly the same man-
nerasabove. Find the tangential pointatthe polarcurve
for thelinenow originating from (0, I/b) (instead of (0, a))
. In summary we have the following

Rule. If the infensity of the next used lift can be described
bya mndom variable A, then the optimum speed ring setting
is {F(]/A)) , Where ‘optimum’ refers to minimum expected
time.

This contradicts common opinion that the average of
theliftitself should be used as the speed ring setting. The
following examples clarify the difference.

Example 1. Assume thediscrete distribution givenin
(3). The corresponding optimal speed ring sctting is

(0.05/0.5 +0.2/1.0 +0.3/1.5 + 0.3/2.0 + 0.1/2.5 + 0.05/3.0)7" = 1/0.7067 = 1.415,

Thisis theso called harmonic mean, yielding a smaller
value than E(A) = 1.675. This is generally true for any
distribution, and means that the probability of finding
betterlift than expected does not compensate the worse
ones one has to take.

Example 2. Let A be uniformly distributed over|[c, d],
0 < c <d, with density

0<e<d parameters.

1

flz) = {éi"id—“)s ife<z<d

otherwise

Roughly spoken, under this distribution any lift in-
tensity between c and d is equally likely. Then E(A) = (¢
+d)/2, whilst

1 AT d—e
S PP P e
E(1/4) (_/; d—c z) Ind - 1Ine

The longer the interval [c, d] is, the larger is the
uncertainty about the lift coming ahead. The following
numerical examples show how to choose correspond-
ing speed ring settings. Observe that in all cases the
expected value is the same E(A) = 2.0.
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interval of uncertainty: speed ring setting:

1.5 2 25
el = 1/b=1096
1 2 3
; =+ 1/b=182
0.5 2 35

= 1/b=154

Taking limits ¢,d—=2 yields 1/b = 2 such that the
deterministic model is obtained as a special case.
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FIGURE 3. Clide path and lift.
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FIGURE 4. Ups and downs on a track.

I11. A Full Stochaslic Model

Things are even more complicated during a real
flight. Not only the (random) intensity of lift, but also
their distance essentially influences the optimum strat-
egy. The following smallexample reveals theadditional
difficulties. Consider a glider at 1000 m above ground,
furthermore a lift of 1 m/s at distance g and another one
of 3 m/s at distance b. Glidepaths corresponding to
speed ring settings 0,1,2, and 3 are depicted in Figure 3.
The corresponding points where the glider would touch
the ground without climhing on its way are denoted
accordingly by mc0, ..., Mc3, Dependent on the position
of the stronger lift t] 1e time minimal strategy to climb
back to the original altitude in this lift is the following.

mcl = b: Go to the lilt at position # with speed ring
setting 1. Climb to the altitude to just reach the lift at b
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using speed ring setting 1. Climb in the lift at b.

M3 <b<mch: GD totheliftatb using speed ring setting
x, x as large as tojust reach the lift at b. Forget about the
lift at a. Climb in the lift at b. b < mc3: Go to the lift at b
using speed ring setting 3. Climb there.

[\Iuw if the intensity of lift b is a random variable and
the position is fixed, this would result in a complicated
optimal-on-average strategy with many subcases to be
distinguisined. | If the distance itselfis a random variable,
then ch ara.cterizm}J the Optlmal stravegy in a concise
manner seems to be hopeless. Moreover, to describe

random convection patterns over a long distance in this
way leads to an untractable model.

Tirst of all, a reasonable but still tractable model of
convection behaviour is needed. We suggest to observe
convectiononly along the path of a glider projected onto
the ground, and record ups and downs along this path.
This of course means that pilots flying along different
paths in the same weather conditions experience differ-
ent convection profiles. But this is natural, competing
pilots try to follow those tracks which promise most
favourable conditions. Qur intention is to determine the
optimum speed once the track has been chosen. After
discretization (e.g. insteps of 0.5 m /sfrom-3m/sto+3
m/s) one could for example observe the contour repre-
sented in Fig. 4. There are a lot of empirical rules for
typical thermal patterns. For instance, "The stronger an
e O downwind is, the smaller is its average exten-
sion.’, or ‘To have a strong down- after a strong upwind
is most likely’. Many other empirical rule exist. We add
one more, which seems not to contradict reality: “The
future convection ona path depends only on the present,
not on past values of ups and downs'.

Markov jump processes are able to model these em-
pirical rules. A Markov process is a family of random
variables X(d), d > 0, where X(d) denotes the random
value of convection at distance d from the origin on a
discrete scale S, e.g. as above § = {—3.0,—25,...,0,..
.,2.5,3.0). A concise description of the underlying theory
can be found in [2]. The stochastic behaviour of the
process is completely described by the initial distribu-
tionand the corresponding generatormatrix (0 = (q;),‘),‘),‘t <
withgjj 20, ifi=j,and gjj=-2%; j#idij- Roughly spoken, pjj
= gij/- qii is the probability to visit convection of inten-
sity jwhenleaving state i. Furthermore, the sojourn time
to stay in state jes is exponentially distributed with
parameter - g

Example 3. The following very simple model consid-
ers only ups and downs on the scale

-4 3 1
=3 =% 0
5 1 -6

Then the probability forajump from-1m/sto+1m/
5is1/4, and from-1m/sto(0m/sis3/4. The extension
of a +l m/s lift is an exponentially distributed random
variable with expectation 1 /6. The distance measuring
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FIGURE 5. Thermal patterns.
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FIGURE 6. Sample screen of glidepaths.

unit in this case could be 100 m, such thatlift of 41 m/
s have an expected extension of 100 m.

The advantage of the Markov model is its depen-
dence on only a few parameters. If the state space S
contains 1 elements (up/down values), then the model
is specified by n(in - 1) parameters. These offer great
flexibilty, while still retaining tractability of the model.

The optimal strategy to cover a certain distance in
minimum expected time is unknown under this model.
However, to compare the efficiency of different strate-
gles, a simulation tool has been developed. The simula-
tion process consists of two steps. First, a weather pat-
tern is offered according to the above model. Corre-
sponding parameters in form of an intensity matrix can
be fed by the user. Furthermore, one out of four different
factors canbe chosen, causing more rapid changes in the
same basic convection pattern. Lifts are visualized by
clouds and the corresponding intensity can be recog-
nized from a scale below (see Figure 5). After the convec-
tion pattern has been generated, the gliding paths of
four gliders are depicted, each applying a different
strategy (see Figure 6 for a sample screen). The gliders
use the optimal speed according to individual tactics of
variable speed ring setting and the present convection
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intensity. The actual sink rate is then taken from the
polar curve such that a realistic performance behaviour
is achieved.

One of the gliders can be controlled manually such
that a pilot can practice his own tactics in a random
weather environment, and compare it to other competi-
tors. Several options can be selected by the user, namely
convection parameters (see above), ceiling, distance of
the task, visibility (which means the distance to which
lift can be seen ahead of the present position of the
manually controlled glider), and the type of active glid-
ers with or without water ballast.

Extensive use of the simulator has shown that it
generates quite realistic convection patterns and allows
for comparing strategies in an actual environment. Tt
thus can be used as a training program to improve a
pilots tactical decision making. The corresponding pro-
gram runs on PCs with VGA graphics card. It will be
made available by the author upon request.

IV, Conclusions

In section II we suggested an extended McCready
theory based onrandom liftintensities. The correspond-
ing optimization problem has a simple solution based
on a modified speed ring setting. By estimating the
distribution of the lift intensities from past data during
a task, the corresponding setting could be calculated
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automatically by a modern electronic variometer, thus
supporting the decision of pilots on their speed to be
flown between successive lift. Concerning the Markov
model, a lot of questions is still open. Of paramount
interest is the problem how to fit the parameters of the
modelto existing measured data of convection patterns.
This would verify the usefulness of the model for gener-
ating realistic random environment. Further work will
also be devoted to determine good, maybe nearly opti-
mal strategies which simultaneously minimize the ex-
pected time en route and the risc of an outlanding,.
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