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Abstract

Because of the extremely low drag associated with mod-
ern high-performance sailplanes, the landing approach
trajectory can become critical if aerodynamic deceleration
devices are not used. In the paper it is assumed that the
sailplane approaches the landing strip head-on in still air
with too much speed, altitude, or both, to allow a conven-
tional approach glide. It is also assumed that the initial
altitude is too low for any kind of go-around maneuver.
The treated problem is then formulated as an optimal
control problem, and this problem is one of transferring the
sailplane from a prescribed initial state to a prescribed
terminal state in minimum distance. The flight is confined
to a vertical plane, sideslip or other lateral maneuvers are
not allowed (treated in the analysis). It is shown that the
mostobvious, and perhapsstartling, feature of the optimal
trajectory is its highly oscillatory nature. Presented solu-
tion provides useful qualitative information for high L/D
of sailplanes, butalso thelightaircraft. The lowerbound on
speed is necessary for the problem to have a solution. The
altitude inequality constraint provides a realistic solution.
All calculations were performed on modern
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high-performance Yugoslav sailplane VUK-T.
Introduction

Over the last few decades, the recreational use of sport-
ing gliders or seaplanes has accelerated dramatically. The
application of sophisticated analysis techniques to the
many interesting and sometimes unique problems en-
countered in soaring flight lags considerably behind that
found inother areas of flight dynamics. However, this lack
of theoretical attention appears tobe changing rapidly. The
objective of the research presented here is to apply a
modern optimum controlalgorithm toa simplified class of
asailplanelandingapproach trajectoriesand to deduce the
basic features of a corresponding minimum distance.

Because of the extremely low drag associated with mod-
ern high-performance sailplanes, the landing approach
trajectory can become critical if aerodynamic deceleration
devices are notused. For the problem treated in this paper,
it is assumed that the sailplane approaches the landing
strip head-on in still air with too much speed, altitude or
both to allow a conventional approach glide. It is also
assumed that the initial altitude is too low for any kind of
go-around maneuver. The problem can thenbe formulated
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as an optimal control problem, in which one seeks the lift
coefficient time history which provides the shortest pos-
sible landing approach distance. Alternately, the problem
is one of transferring the sailplane from a prescribed initial
state to a prescribed terminal state in a minimum distance.
Furthermore, the flight is confined to a vertical plane.
Sideslip or other lateral maneuvers are not allowed. The
landing approach must also be made without benefit of
spoilers, drag brakes, drag chutes, or other deceleration
controls. Rotation dynamics are neglected. Finally, it is
necessary to impose minimum speed and altitude path
constrains on the problem.
Statement of the Problem

Since the final time (t,) is not specified, a control param-
eter, a =t,_is introduced via the time transformation
t=art 0<t=< tx 0<t <1
Thus, the variable end time problem will be transformed
into a fixed end time problem with independent variable t.
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Figure 1.

Using inertial Cartesian coordinates the equations of mo-
tion for a sailplane (Figure 1) becomes:

dv, .
T R (V,C,)cosy - R ,(V,C,)siny
dv, ,
i gt = -mg + R,(V.C,) siny + Rz[V,C,)cosT
dx dh _ w5
a - @ T WYty =g

The point mass equations of motion are written with
respect to the usual wind or trajectory axes. Since the final
range is to be minimized and since the range variable does
not appear in the other dynamics equations, the range
equation is simply incorporated into the performance in-
dex and is not required as a part of the optimization
process. The three remaining state variables are: speed V,
flight path angle g and altitude h.

"The optimal control problem can be formally stated in
terms of non dimensional variables as follows: Find the
control function u(t) in domain 0<t<1 and the control
parameter a which minimize the performance index:
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! 1 =1
- v
/= aIVcosrdr+ k7 J-[{g/‘()m e l] dr +
u v stad
I
+ k' [ ds (1)
o

subject to the dynamics constrains and subject to the initial
(0) and terminal (1) state constrains:

%:—a[q(‘r (u)V? +sin;y] (2)

%7; = a[qC‘z(u)Vz —COS;V]:" |4 (3)
dh ;

—=aVsiny 4

&y (4)

n= 1 _pgX (5)
2(mg/9)

h(O)=h,, I X h)=~h_,/ X (6)

V(0)=V,,.(eX)™"" V)=V, (eX)™" (7)

7©0)=7 qure y()=0 (8)

Thecharacteristic values are taken from Reference4:h___
altitude at the beginning of the approach processh =50
m; trend altitude at theend h , =5m; V__ speed at the
beginning of the approach process V, =22 m/s; V_,
speedattheendV  ,=20m/s;V_  stallingspeed which for
aVUK-TgliderisV_ ,=153m/s; g flightpathangleat
thebeginning of the approach process g, =-0.02rad, and
X=1000 m is an arbitrary characteristic length used in the
non-dimensionalization.

Control inequality constraints of the lift coefficient C,

during the process:

lc,| < C,.

can be presented as:

C,(u) = Ly, ( 2 sin’u - 1)

This transformation insures lift coefficient magnitude tobe
less then stalling value C, . Taking into a count aerody-
namic characteristics of a VUK-T glider (drag polar and a

C,,..) it follows:
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C,(u)=178(2sin*u-1) (9)

C, (1) = 001756 — 0.0095C, +0.021C2 (10)

Second term of the equation (1) represent integral inte-
rior penalty function for the speed constraint, and limits
the speed above the stalling value (V__ ). Third term of the
equation () representintegral interior penalty function for
the altitude constraint, and enforces positive values.

As with any penalty function scheme, it is necessary to
solve a sequence of unconstrained sub- problems. Equa-
tions (2) to (10) with fixed positive penalty constants k, and
k,. This penalty constants are then increased between
successive sub-problems to allow the solution point to
move closer to the active constraint surfaces. With the use
of these interior penalty functions, it is necessary to begin
computations with a nominal control which generates a
trajectory satisfying both state inequality constraints.
Numerical Results

The stated optimal control problem has been solved
using a gradient projection algorithm which incorporates
conjugate directions of search forarapid convergence. The
purpose of the projection operator in this algorithm is to
obtain satisfaction of the terminal state constraints, equa-
tions (6) to (8) at each iteration. The method is a direct
gradient method in that the control function u(t) and the
control parameter a are altered simultaneously on each
iteration in an attempt to reduce value of I in equation (1)
and satisfy the optimal condition.

All calculations were performed on PC 486 computer
using Fortran 77 compiler and double- precision arith-
metic. The required integrations were carried out using a
standard fourth-order Runge- Kutta method with 100 fixed
uniformintegration steps. Three sub-problems were solved.
For each of these sub-problems, the penalty constants k,
and k, were each set equal to 200, 1000, and 5000 ru:peo
tlveiy A final refinement run was made with k, = 5000, k,
=10000 and 400 integration steps. qucu]ahons were per-
formed for the sailplane mass of 320 kg and sailplane wing
surface of 12 m2

The optimal landing approach trajectory of the VUK-T
gliderisshowninFigure2. The minimum landing-approach
distance is 1420 m. The optimal final time is 67.1 s. The
terminal state values for this trajectory agree with the
values prescribed by equations (6) to (8) to at least six
significant figures. Each peak on the optimal trajectory is
associated with a stall regime.

Asmay be noted from the figure, the minimum-distance
glide consists of three relatively distinct portions. Initially,
thesailplane climbs. Thisisimmediately followed by a step
diveand a pull-up to approximately the initial altitude. At
this point, the speed has been reduced to almost the stall
speed. There then follows a succession of shallow, but
rapid, divesand climbs. These damped oscillations appear
to converge to a straight-line trajectory with a glide slope
of approximately 1/37, which in turn s (L/D),,, =37glide
slope for VUK-T sailplane. A short final dive is reqmred to

70

ALTITUDE (m)
70

mp
50

40

[--- - RECUCE OF ALTITUDE - — =

30

W

00 400 800 B8O 1000 12040

RANGE (m)

FIGURE 2.

mach the specified terminal boundary conditions. The
corresponding optimal lift coefficient time history is pre-
sented in Figure 3.
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FIGURE 3.

Discussion

The most obvious, and perhaps startling, feature of the
optimal trajectory is its highly oscillatory nature. In practi-
calterms,itiseven questionable whether the trajectory can
be flown, since the period of oscillation is only 7-8 s. Still,
the solution provides useful qualitative information for
high L/Daircraft. If the problem is viewed basically as one
of energy dissipation in a viscous medium, then it seems
reasonable to increase the total path length as much as
possible. If sufficient lift is available, this implies an oscil-
latory trajectory. However, if the lift capability is severely
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reduced by the use of spoilers, for example, then one could

anticipate that oscillatory trajectories would no longer be

possible.

It should also be mentioned that this optimal control

problem is a rather difficult one because of the multiple

speed-constrained arcs present in the optimal trajectory.

The lower bound on speed is necessary for the problem to

have a solution. The altitude inequality constraint pro-

vides a realistic solution; without it, a solution with an

impressive underground dive results.
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