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Because of the extrcmely low drag associated with mod-
em high-performance sailplanes, the landing approach
traj€ctory can become critical if aerodynamic deceleration
devices are not used. In the paper it is assumed that the
sailplane approaches the landing stdp head-on in still air
with too much speed, altitude, orboth, to allowa conven-
tional approach glide. It is also assumed that the initial
altih.rde js too low Ior any kind of go-around maneuver.
The treated problem is then formulated as an optimal
control problem, and this problem is one of transferdng the
sailplane from a prescribed initial state to a prescdbed
terminal state in minimumdistance. The flight isconfined
to a vertical plane, sideslip or other lateral maneuvers are
not allowed (treated in the analysis). It is shown that the
most obvious, and perhaps startl ing, featu re of the op timal
trajectory is its highly oscillatory nature. Presented solu-
tion provides useful qualitative information forhigh L/D
of sailplanes,butalso the lightaircraft. Thelowerbound on
speed isnecessary for the problem to have a solution. The
altitude inequality constmint provides a realistic solution.
AII calculations were performed on modern
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high-perf ormance Yugoslav sailplane VUK-T.
Introduction

Over the last few decades, the recreational us€ ofsport-
ing gliders or seaplanes has accelerated dramatically. The
application of sophisticated analysis techniques to the
many interesting and sometimes unique problems en-
countered in soaring flight lags considerably behind that
found in other areas of fl ight dynamics. However, this lack
of theoretical attention appears tobechanging rapidly. The
objective of the research presented here is to apply a
modem optimum control algorithm to a simplif ied class of
a saitplane landingapproach trajectories and to deduce the
basic features of a corresponding minimum distance.

Because of the €xtremely 1ow draS associated with mod-
ern high-performance sailplanes, the landing approach
trajectory can become critical if aerodynamic deceleration
devicesarenotused. For theproblem treated in thispaper,
it is assumed tlut the sailplane approaches the landing
strip head-on in still air with too much speed, altjlude or
both to allow a conventional approach glide. It is also
assumed that the initial altitude is too low foranykind of
go-around maneuver. The problem can thenbe formulated

TECHNICAL SOARING



as an optimalcontrol problem, in which ones€€ks the lift
coefficient time history which provides the shoftest pos-
sible landing approach distance. Alternat€ly, the problem
is one of transferring the sailplane from a prescribed initial
state toa prescribed terminalstate ina minimumdistance.
Futhermore, the night is confined to a vertical plane.
Sideslip or other lateral maneuvers are not allowed. The
landing approach must also be made without benefit of
spoilers, drag brakes, drag chutes, or other deceleration
conhols. Rotation dynamics are neglected. Finally, it is
necessary to impose minimum speed and altitude path
constrains on the problem.
Statement ot the Problem

Since thefinal time (tr) isnotspecified, acontrolparam-
eter, a = t!is introduced via the time transformation

t=Crt 0_<t<tr 03r31
Thus, thevariable end time problem will be transformed
into a fixed end time problem with ind€pendent variable t.
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Figure 1

Using inertial Cartesian coordinates the equations ofmo-
tion fora sailplane (Figure 1)becomes:

dv..?= - n,(v.c.) cosl - n"(v.c,) sinl

dV
",? = -**- R.(v.c.)sinr I R.lv.c.)cosl

= Vr, tanr = u'+V"

, = "j, *",0, - a jllr* t' * -,)' u, -

+ *i lh.tt (t)

subject to the dynamics constrains and subject to the initial
(0) and terminal (1) stat€ constrains:

ff=-ol,tc,(u)w +sinrl e)

!! = al46,1u1Vz -cosyltV B)clt

dh

dr = aVsinl (4)

,=! Psx
' 2 (mg lS)

(5)

(6)

(7)

(8)

The point mass €quations of motion are written with
respect totheusual wind or trajectory axes. Since the firal
rangeis tobe minimized and since the rangevariable does
not appear in the oih€r dynamics equations, the range
equation is simply incorporated into the performance in-
dex and is not required as a part of the optimization
process. The three remainhS state variables arerspeed V,
flightpath angle I and altitude h.

'The optimal control problem can be formally stated in
terms of non dimensional variables as follows: Find the
control function r,(t) in domain 0<t<1 and the control
parameterawhichminimizetheperformanceindex:
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h(o)=h",,tx

v(o) = v,k,kx)-l',

v(o) = v ,,,"

The characteris tic va lues are ta ken from Reference 4: \,..,
altitude a t the be8nuing of the approach process l'r,,"., = 50
m; trend altitude ai ihe end h""J = 5 m, V..i speed at the
beShning of the approach process V",.d = 22 m/s; V",,i
speedattheendV.,,J=20mls;V.,,,,stallingspeed*'hichfor
a VUK T Slider is V.,-,, = 15.3 m/s, gn. flight path angle at
the beginning oftheapproach processg,,.i = -0.02rad, and
X =1000 m is an a rbi trary characieristic l€n8th used in ihe
non-dimensionalization.

Control inequality constraints of the lift coefficient C,
durint the processl

lc,(t)l < c"--

can bc p rese n ted as:

c"(u) = cr- (zsint, - l)
This transforma tion insures I ift coefficient magni tlrde to be

less th€n stalling value C?,,,.,. Taking into a count aerod)'
namic characteristics ofa VUK-T glider (drag polar and a

C2",..) it follows:
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h(1)=h,"dtx

v(r) = v_dzx) '11

/(1) = 0

d^_., dh
dr '. dt



C'(u)= 138(2si^'z u -1)

(', (u) = 0.01756 - 0m95C, +0.QIC:

(s)

(10)

Second term of the equation (1) rcpresent inteSral inte-
rior penalty function for the speed constrainL and limits
the speed above the stallingvalue (V,,"jr). Third term of the
equation (l) representintegral interior penalty furlction for
the altitude constraint, and enforc€s positivevalues.

Aswith any penalty function scheme, it is necessary to
solve a sequence of unconstrained sub- probl€ms. Equa-
tions (2) to (10) with fixed posi tive penal ty cons ta nts \ and
k:. This penalty constants are then ircreased between
successive sub-problems to allow the solution point to
move closer to the active constra i11t surfaces. With the use
of theseinteriorpenaltyfunctions,itisnecessarytobegin
computations with a nominal control Nhich g€nerates a
trajectory satisfying both state inequa lity constraints.
Numerical Results

The stated optimal control problem has been solved
using a gradient projection altori thm which incorpora tes
conjugate directiofl s of search f ora rapid convergence. The
purpose of the projection operator in this algorithm is to
obtain satisfaction of the terminal state constrainis, equa-
tions (6) to (8) at each iieration. The methocl is a direct
gradient method in tllat the control tunction !(t) and ihe
control parameter a are aliered simuiianeously on each
iteration in an attempt to reduce value of I in equation (1)
and satisfy the opiimal condition.

All calculations were performed on PC 486 computer
usinS Fortran 77 compiler and double- pr€cision arith-
metic. The required integrations werecarried out usint a
standard fourth-orderRunse-Kutta methodwith 100 fixed
uniform integration steps. Three sub-problemsweresolved.
For each of these sub-problems, the penalty constants kr
and k, were each set equal to 200, 1000, and 5000 respec-
tively. A final refinement runwas madewithkr = 5000, k,
= 10000 and 400 integration steps. Calculations were per-
formed f or the sailplane mass of 320 kg and sailplane wint
surface of 12 m'z.

The optimal landing approach trajectory of the VUK-T
tlider is shown in Fiture 2. The minimum ianding-approach
distance is 1420 m. The optimal final time is 67.1 s. The
terminal state values for this trajectory agree with the
values prescribed by equations (6) to (8) to at least six
significant figures. Each peak on the optimal trajectory is
associated with a stall regime.

As maybe noted f rom the figure, the minimum-distance
glide consists of three relatively distinct portions. Ini tially,
thesailplane climbs. This is immediately followed bya step
dive and a pull-up to approximately the inirial alrirude. Ar
this point, the speed has been r€duced to almost the stall
speed. Therc then follows a successiorl of shallow, but
rapid, dives and climbs. These damped oscillations appear
to converSe to a stni8ht-line trajectory wjth a tlideslope
ofapproximately 1/37, which in turn is (L/D).,,=37glide
slope for W'K-T sailplane. A short final dive is recluired to
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mach the specified termhnl boundaly conditions. The
corresponding optimal lifi coefficient tim€ history is pre-
sented in FiBure 3.

Dis.ussion
Th€ mosi obvious, and perhaps startlint, feature of the
optimal trajectory is its hiBhlyoscillatorynature- In practi
cal terms, i t is even questionable whether the trajectory can
be flown, since theperiod ofoscillation is only 7-8 s. Still,
the solution provides useful qualitative information for
high L/ D aircraft. If the problem is viewed basically as one
of energy dissipation in a viscous medium, then it seems
rcasonable to inctease the iotal path length as much as
possible. Ifsufficient lift is available, this impli€s an oscil-
latory trajectory. However, ifihe liftcapability is severely

FIGURE2.
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reduced by the use of spoilers, for example, then one could
anticipate that oscillatory trajectories would no longer be
possible.
It should also be mentioned that this optimal control
problem is a rather difficult one because of the multiple
speed-constrdined arcs present in Lhe optim.rl trnjectory.
The lowerbound onspeed is necessary ior the probtem io
have a solution. The altitude inequality constrainr pro-
vid€s a realistic solutionj without it, a solution with an
impressive underground dive results.
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