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Abstract

Winglets are designed for the Janus B sailplane through theaupling of an aircraft design code that uses a high-order
potential-flow solver with single-objective and multi-objective evolutionary algorithm optimization methods. The se
of the single-objective optimizer, Covariance Matrix Adapgation Evolutionary Strategy (CMA-ES), serves as a step-
ping stone to employing a multi-objective optimizer, the egilon-dominance Multi-Objective Evolutionary Algorithm
(e-MOEA). The multi-objective evolutionary algorithm prove s to be successful in designing several winglets with favor-
able changes in performance. For example, one winglet gereged in a two-objective study was able to achieve a 0.1%
cruise drag reduction and a 4.5% thermal drag reduction; this results in a peak cross-country speed improvement of
5.5% during weak weather conditions with maximum thermal cae strengths of 2 m/s and 0.6% during strong weather
conditions with maximum core strengths of 8 m/s. While the dsign methodology is far from being fully matured, it
provides a solid foundation for future research.

Nomenclature Introduction
The addition of winglets to high-performance sailplanes become

AoA = Angle of Attack [deg.] common practice within the soaring community. Examples thee
b = span[m] o Schempp-Hirth Discus 2 or the Ventus 2. In order to have perdnce
Cop =  profile drag coefficient average over span enhancing winglets, these have to be tailored for eachopdatitype of
a = two-dimensional lift coefficient sailplane due to the complex flow conditions that exist neainatip.
G = three-dimensional lift coefficient An additional complication is the relatively challengingdadiverse
¢ = chord[m] mission profile typical for sailplanes that operate over demange
D = drag[N] _ of lift coefficients at high- and low-speed flight during inteermal
E(t) =  archive population cruise as well as thermals for altitude gain, respectivéhjis requires
e = span efficiency a relatively elaborate design process that generallysakavily on the
f = Objective function personal experience of a designer. If designed incorrectiynglet can
h = winglet height [m] _ ~ easily lead to a performance penalty rather than an impresem
AK(h) = induced-drag factor dependent on height of winglet

M = Mach number

[ = solution Brief Overview of Winglet Design Methods

P(t) = traditional evolutionary algorithm population While Whitcomb generated the framework for the design arulém
S = planform area [rf] mentation of winglets to aircraft in the 1970s [1], much haarged
Vcr = crossover velocity [m/s] since then in the winglet design process. Of particularrégseis
w = weight [N] the work by Maughmer concerning the realm of sailplane vande-
o) = density [kg/n?] sign [2]. The early design philosophy was based on a crosgmiat
IS = epsilon-dominance, hyper-volume dimension methodology that analyzes the trade-off between the reguat in-
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duced drag and the penalty of the added profile drag of theletiras
shown in Eq. 1:

ADjnguced+ ADprofile =0 (2)

This relation leads to the crossover spa&gk, given by Eq. 2, which
provides an equation for a velocity that satisfies Eq. 1. iitnigortant
to note that this relation is a function of the induced-dragtdr,K (h),
which is primarily a function of the winglet height,
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When designing the winglet, Maughmer originally set thessover
speed\Vcr, slightly higher than the cruise speed to ensure that thecadd
profile drag due to the winglet caused no flight performanc®|pe in
the regular operational range. Ultimately, a modified avesspoint
method was developed in Ref. 3, which takes into account afbe-
metric effects than just the winglet height.

Recent work by Takenaka et al. [4] provides a foundation of
ing a multi-objective evolutionary algorithm to design wiets for
a transport aircraft outside of conventional design norribey fol-
low a very complex winglet-design process, which involvegensive
high-fidelity Computational Fluid Dynamics (CFD) and Cortgtional
Structural Dynamics (CSD) coupled with an evolutionaryoaiym
and several data mining techniques. It is important to notéheir
study that only one flight condition was analyzed, i.e. @aigV = 0.8.
A total of two design objectives were pursued by Takenakd. ¢tk
i) minimizing block-fuel used and ii) maximizing the také-weight.

Multi-Objective Evolutionary Algorithms (MOEA)

In essence, an evolutionary algorithm optimization meti®d
stochastic search method, which computationally simsléte natu-
ral evolutionary process, typically drawing from the Damian concept
of ‘Survival of the Fittest’. Evolutionary algorithms areierally com-
prised of population members that search the possibleisolgpace.
These members are manipulated by a set of operators (ngatiat-
ing, etc.) and evaluated by some type of fitness function.s Tiki
ness function determines, which members survive and mowe tre
next generation of the solution. Theoretically, this psxis utilized to
search a solution space until an optimum is found. In practiowever,
a time constraint typically limits the number of functionagvations
(NFE), and thus only an ‘acceptable’ solution is found. NM@bjective
Evolutionary Algorithms are a feasible optimization agwb for the
design of winglets of sailplanes that have to satisfy a walege of
design objectives. Multi-objective problems lead to a getadutions
rather than one unique solution. This set of solutions isifothrough
the use of Pareto-optimality theory [5]. Pareto-optimdlgons are
those, which when evaluated, cannot be improved withoue ey
affecting at least one of the objectives. The final optimé¢c@n re-
quires the decision maker to choose from theasgbsterioriand to
weigh the tradeoff between the objectives exemplified bysthiation
space. Evolutionary algorithm optimization methods haxeml ad-
vantages over traditional deterministic optimization neels, such as
calculus/gradient-based, Greedy, or hill-climbing, whba solution
space is unknown and/or of non-linear form with multiple kgeand
valleys. This is indeed the case for winglets that have aitadé of
design parameters including height, taper, twist, aloni want, toe,
and sweep angles.
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Fig. 1: Sketch of the Janus B sailplane

Contributions of this work

This work presents an efficient computational tool that hasatbil-
ity to design a winglet that offers performance gains corapler to

US designs produced using a conventional, i.e. experienseehalesign

approach. The efficient computational tool that is used i diesign
process couples an aircraft design code, entitled iFly][@yfich uses
a higher-order free-wake potential-flow solver entitle@dWake [8],
with the multi-objective evolutionary algorithm optimize-MOEA [9]
(epsilon-dominance Multi-Objective Evolutionary Algtimn).

Two primary studies are considered that provide a directiepp
tion of the coupled design code/optimizer package to theggdes a
winglet for the Janus B sailplane, which is a 1978 sailplaesigh
without winglets, see Fig. 1. The first study lays the fourmtafor
implementing a multi-objective optimizer by investigafithe feasi-
bility of integrating a single-objective evolutionary alithm, entitled
CMAES (Covariance Matrix Adaptation Evolutionary Strategl0]
with the aircraft design code iFly [6, 7]. The objective ofstlinitial
study is to gain experience with the integrated design aprof flight-
performance prediction and evolutionary optimizationoaidpms. In
general, modern sailplanes have to perform well at highesngf at-
tack during thermalling and high-speed flight during cruisgween
thermals. These diverse requirements lead to the seconhafptre
study that uses a multi-objective optimization algorithmattis based
on ane-MOEA/performance prediction tool.

Using this framework, the second study initially explones tlesign
objectives by optimizing for i) minimizing total aircraftrag at high-
speed cruise, and ii) minimizing total aircraft drag durthgrmalling
flight. After this initial study is concluded, a third objea is added
as iii) minimizing the root bending moment addition due toiagiet.
With these set objectives, the evolutionary algorithmrofer yields a
family of non-dominated solutions, also referred to as &@aoptimal
set, from which the user performs a selectaposteriori This sec-
ond study provides insight into the state-of-the-art ohgsa multi-
objective evolutionary algorithm optimizer that is tighttoupled with
an aircraft design code. While design objectives ii) andniay not
be the most relevant objectives regarding winglet designsdmpeti-
tion sailplanes, the focus on objectives other than maxngithe av-
erage cross-country speed allows the exploration and detnatdion of
the multi-objective design optimization. Furthermorealibws greater
flexibility in response to the changing competition rulesttillow vary-
ing wingtip devices. The value of this work lies in the facatla suite
of advanced winglet designs can be obtained in a reasonatgentith
the proposed methodology.
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Numerical Methods
This work applies a coupled methodology of an aircraft desigde
and a multi-objective evolutionary algorithm optimizerhél methods
are coupled through a simple C script. Significant attentias given to
the selection of the individual parts. The selected peréoroe predic-
tion tool is a three-dimensional potential-flow solver #atl FreeWake

that was developed by Bramesfeld and Maughmer [8]. The perfo

mance code is a subset of an aircraft design tool entitlgdd€Veloped
by Kody and Bramesfeld [6, 7]. The selected optimizers agebvari-
ance Matrix Adaptation (CMA) Evolutionary Strategy by Hansand
Ostermeier [10] and the-MOEA (epsilon-dominance multi-objective
evolutionary algorithm) by Deb et al. [9]. In the followingach com-
ponent of the overall coupled method is introduced.

Aircraft Design Code, iFly

Since evolutionary algorithm optimization methods tyfliceequire
thousands of function evaluations, selecting a performgmediction
method that is both time efficient and accurate is an impotiask.
Furthermore, this code is intended for users who may not laave
cess to high-performance computer clusters. The need $ortdan-
around times of simulations eliminates the need for highlitigd CFD
simulations for the performance prediction method due ® akso-
ciated higher computational cost and hardware-infragiracrequire-
ments. Therefore, a three-dimensional potential-flowesolvas cho-
sen that had previously been validated and that is capalkesofving
the complex flow around a winglet. This is the reason for cogpthe
selected evolutionary algorithms, which are further déscr below,
with the aircraft design code iFly [6, 7]. A central elementthe air-
craft performance model is the aerodynamic prediction rteochoted
in a potential-flow method called FreeWake, developed byrigsteld
and Maughmer [8]. FreeWake predicts the spanwise lift iBistion

Movement of Search Space

Fig. 2: Concept of the Covariance Matrix Evolutionary Strategy
(CMAES). 1) Original Search Radius, 2) Original Centroid,
3) Initial Population Distribution, 4) Moved Centroid, 5)
‘Selected’ Population Members, 6) Old Search Radius, 7)
New Search Radius.

tional vortex-lattice or panel codes.

In addition to drag from the wing and empennage, the cortidha
of other aircraft elements are predicted using either cteckflat-plate
skin friction approximations or other semi-empirical apgeches. For
example, the fuselage drag is estimated using a strip medthai-
termine the skin-friction drag of the exposed surface af@ther cor-
rection factors account for pressure-drag and interferéogses. The
airfoil data used are based on experimental results in Rebflihe
FX 67-K-170 airfoil that is used on the Janus B. Various flapirsgs
and Reynolds numbers ranging from 700,000 to 3,000,000 w@re
sidered. The winglet airfoil used was the PSU 94-097 airéoilairfoil
specifically designed for low-speed winglets and testedhat Fenn-
sylvania State University Low-Speed, Low-Turbulence Wihnel at

and induced drag of the wing and empennage. Based on the isanWReynolds numbers ranging from 240,000 to 1,000,000 [14].

lift-distribution prediction and the local chord-basedyRelds numbers
along the wing span, the profile drag is determined from lopka-
bles. A simple stall prediction model, outlined by McCorknid 1],
was added to the potential-flow code and enhances the ayafrédee
aerodynamic solution with insignificant computational tcos addi-
tion, the potential-flow solution finds a trim solution forethorizontal
tail, thus effectively capturing any trim-drag effects.

The particular approach in FreeWake uses elements withldittd
vorticity to represent the wing and its wake. For the wing eipd
the spanwise distribution of the bound circulation is diésa using a
second-order spline along each spanwise element. In a,$basaod-
eling of the bound circulation is very similar to that of Homann’'s
Mutliple-Lifting Line method [12], although FreeWake hagrailing-
edge condition. In addition, the wake consists of a contiisuaortex
sheet with a spanwise vorticity distribution that variesehrly along
each element. Even as a continuous vortex sheet, the wakeecah
non-planar shape and, for example, model the rollup of tearslayer
downstream of a wing. For the present study a prescribed Inveaie
used that extended the trailing edge along the free stre&uityevec-
tor in order to minimize the computational effort. Expeerindicates
negligible differences in performance predictions foredpatios typ-
ical for sailplanes. A further strength of the employed ptitg-flow
method lies in its continuous nature that significantly Etucomputa-
tional costs for load resolutions similar to that of othetgmial meth-
ods, for example vortex-lattice methods. In addition, tbatmuous
model of the wake vorticity shows improved numerical sigbdue to
the absence of singularities as are commonly encountetteccamven-
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Covariance Matrix Adaptation Evolutionary Strategy (CMAE S)

The CMA Evolutionary Strategy (CMAES), devised by Hansed an
Ostermeier [10], is a stochastic method for real-paranggigmization
that relies on an adaptive covariance matrix to overcomeyroéithe
hurdles that exist for typical Newton or gradient-basedrojzers, for
example badly-scaled, non-linear, and highly non-separabjective
functions. The overall idea of CMAES is that it utilizes tlidaptive
matrix to update its search space based on the previousagiemss
best population members. It also stores information abweitntove-
ment of the population. With this information, CMAES gertesman
adaptive path, which better controls the convergence ofthetion.
The CMAES is also designed to perform very well with small plap
tion sizes £ 10). Therefore, it is advantageous to problems with large
objective function simulation times.

The basics of the CMAES optimizer can be summarized in one sim
ple figure. Figure 2 shows three basic steps for the CMA glyafEhe
first step, shown in (a), organizes information about theesuror ini-
tial population of search points. The second step perforseection
and recombination based on the previous generation, assimo().
Also shown in (b) is the movement of the mean value of the earc
distribution (represented by the cross). The third stepyshin (c),
exemplifies the actual movement of the search radius. Tlusegs
essentially repeats and searches the solution space fglatba mini-
mum. Unlike the multi-objective function described beldie single-
objective CMAES provides only one solution for one objeette the
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Fig. 3: The e-Dominance concept

user. While this removes the decision-making process,wisiadvan-
tageous for non-experienced designers, it solely optisnihe design
for one objective.

Epsilon-Dominance Multi-Objective Evolutionary Algorit hm (e-
MOEA)

As stated previously, a multi-objective evolutionary apter pro-
vides a significant advantage over a single-objective dapémdue to
the fact that multi-objective optimizers are able to haradkearch and
optimization problem with multiple conflicting objectivesA multi-
objective optimizer also generates a family of non-dongdatolutions,
otherwise known as the Pareto-optimal solutions (Parptonal front),
which provide the designer with a relationship between thdtipie
conflicting objectives rather than one single solution.ifigladvantage
of the Pareto-optimal solutions produced by the multi-otiye opti-
mizer allows the designer to avoid a preference-based aightee
system that would prefer one objective over the others poitihie sim-
ulation.

Within the field of MOEAS, there are two distinct goals thas td-
gorithm should meet: i) convergence to the true Paretavadtiront,
and ii) generate a well-distributed set of nhon-dominatddtams. All
MOEAs satisfy these requirements, however, most MOEAS amges
type of a compromise between providing a well-distributetif so-
lutions and the speed of convergence for a specific apmitafihere-
fore, it would seem very advantageous to find an appropria®E,
which provides a good compromise between these two spestamah
the problem at hand. This logic is what led to the decisionsiogie-
MOEA for the winglet-design problem as computational effiy is
an important factor during a design process and so is emgtlrat all
design possibilities are fairly analyzed.

The e-MOEA is a steady-state multi-objective evolutionary algo

EA Population Archive Population

[

P
Crossover

[
offspring

1 |

Fig. 4: The e-MOEA procedure

the e-sized hyper-boxes that P’s traditional domination irgets. Fur-
thermore, if there are two solutions, 1 and 2, within the shyper-box,
the solution closest to the minimization goal is the onlyguar.

With an understanding of the-dominance concept, thee MOEA
procedure can be explained. Two co-evolving populatioedeatured
in the e-MOEA.: i) a traditional evolutionary algorithm (EA) popula
tion P(t), and ii) an archive population E(t), as seen in BigAs the
simulation begins, the initial EA population, P(0), is dexh and the
archive population, E(0), is generated by th@on-dominated solu-
tions of P(0). Next, two solutions, one from each populateam cho-
sen at random for mating to generate one or multiple offgpridow
the offspring are compared to the EA and archive populatiofpsdge
whether or not they should be included to move onto the naxtige
tion. In order for the offspring to enter the EA populatidme bffspring
has to dominate, in the traditional sense, one or more of xfstireg
populations. If this is the case, the offspring replacesadrtie original
population members it dominated. If the offspring, on theeohand, is
dominated by any one member of the population, then the rirfigjis
not accepted into the populations. Entering the smalldrieggopula-
tion relies on are-dominance comparison in a similar manner as done
for the EA population comparison. If the offspringdsdominated by
the archive population, then the offspring is not alloweemnoer, how-
ever, if the offspring member-dominates the archive member, then the
offspring replaces the old archive member. This procedusgmulated
for a specified number of iterations or until convergenceieved. At
that point, the archive population members are reporteteafirtal so-
lutions. These final solutions form tlgenon-dominated Pareto-optimal
front.

Results

rithm based on the-dominance concept that was introduced by Lau-Single-Objective Winglet Design with CMAES

manns et al. [15]. This efficient approach provides the ustrawvell-
distributed set of solutions. Within the algorithm, the rebaspace is
divided into a number of grids of size (hyper-boxes) thatntean di-
versity by only allowing one solution to occupy a hyper gricaayiven

Before taking the full step to solving the multi-objectivatare of
winglet design, a single-objective optimization was perfed of min-
imizing the total drag of the Janus B sailplane with the addibf a
winglet during fast cruise settings. The fast cruise speead deter-

time. Thee-dominance concept is easily explained by Fig. 3. In a min-mined through consultation with Janus B owners. Based csethes-

imization problem of two objective functions, f1 and f2, dwiwmn P
dominates an entire region PECFP, however, P &ldominates the re-

cussions, the selected fast cruise speed was 100 knotsr(B&)4 At
this speed, a typical flap setting of’id applied to the FX 67-K-170 air-

gion ABCDA. Thee-dominance concept essentially encompasses all ofoil on the main wing. The fast cruise objective was selettasked on
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Table 1: Janus B simulation configuration
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Fig. 6: Winglet angles [2]

Maughmer’s design methodology of designing the wingletdbhurt
performance at the fast cruise limit, which ensures thatvinglet will
have a positive influence on the aircraft during its entighflienvelope.
The significance with respect to the overall flight envelope toe pri-
mary contribution of profile drag for this design point alestrated in
Fig. 5. At lower speeds than the optimization point, indudeat will
be larger and an increasingly favorable impact of the wingde be ex-
pected. For the present study, a total of ten parameterssetreted to
be optimized. Figure 6 illustrates four of these wingletgoaeters. The
remaining parameters, i.e. the winglet height, chord, apdrtratio, are
not included in the figure. Figure 7 shows four sections tbastitute
the geometry specifications for the optimization probleract®n 1 is
the panel that serves as an initial transition from the egsnain wing

Wing

Fig. 7: Winglet geometric sections
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Wingspan 18.20 m
Wwing Area 16.94 n?
Wing Loading 26.8 kg/n?
Weight 453.61kg/4448 N
Wing Airfoil FX 67-K-170
Winglet Airfoil PSU 94-097

Table 2: Variable bounds for optimization design space

Variable Lower Bound | Upper Bound
Transition span, m 0.061 0.35
Height, m 0.1524 1.524
Cant angle, deg 45 20
Root chord, m 0.1524 0.479
Taper section 3 0.3 1.0
Sweep section 3, deg 0 25
Taper section 4 0.1 1.0
Sweep section 4, deg 0 30
Toe angle, deg -5 5
Twist, deg 0 10

49

to the winglet, Section 2 provides the sharpest transitietwben the
winglet and wing and has half of the cant angle than the autirglet,

Section 3 is the first panel of the winglet whose height is tiahito
80% of the total winglet height, and Section 4 serves as thglei tip

and comprises 20% of the total height. Table 1 highlightsartgnmt
information regarding the Janus B used in the simulations.

Problem Formulation

In order to achieve the overall goal of finding the optimal gt
geometry, which yields the minimum drag at the aircraftigse speed,
a parametric study was performed to determine the effegsmilation
size and of the initial random seed values. Of these two @xpets,
the one that is predicted to have the predominant effect @sdlution
is population size. Therefore, an analysis was run for Eifmrs of 8,
10, 25, 40, and 100. Itis important to keep in mind that whechéng a
population size of 100, computation time becomes a majtorféor the
analysis. Therefore, a maximum run-time of 12-hours (wihéetts to
a Number of Function Evaluations, NEE20,000) was set as an upper
limit for all simulations. The parametric study also looked/ery small
population sizes since CMAES is reportedly well conditidne run at
these population sizes. The final experiment involved acandeed
analysis of the initial variable dimensions. Four randomdsanalyses
were run to see the effect of variable initial values.

An important factor in this problem formulation is to defiretup-
per and lower bounds for each variable, see Table 2. Whilbdhaded
search space is rather large in most cases, this problearshsgomain
is relatively small due to the real-world constraints ofstiproblem.
While several of these bounds were determined by trial arat,esuch
as height, tapers, toe angle (corresponding to the zerddiff), and
twist, the remaining ones were selected due to aerodynasngidera-
tions or real-world constraints. For example, the traosispan’s lower
bound was set to 0.06 m. (0.2 ft.) for manufacturability cess and
its upper bound was set due to span limitations. The 0.35 h481ft.)
was the distance of the wing that was ‘chopped’ off to makerrdor
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Fig. 8: Single-objective population study

the winglet itself. This is standard practice when designiinglets
for existing sailplanes due to existing span restrictiolfie winglet
root chord’s lower bound was determined due to manufacilitsetea-
sons, and the upper bound was set to the tip chord of thergxisting
design. The sweep of sections 3 and 4 were both kept less @ian 3
order to prevent cross-flow boundary-layer transition.

CMAES Results: Single-Objective Optimization

The first study focused on the influence of varying populasiae on
the final single-objective solution. The goal of this studgswo deter-
mine which population produced the best results within tR&ENmit,
and to determine which population converged fastest to ohaisn.
The objective value used in all simulations was the changetah drag
of the aircraft from the conventional configuration (no wetyto the
configuration with the winglet. Therefore, a negative delitag value
corresponds to a reduction in drag. Figure 8 provides ihgiggard-
ing the NFE that each population requires to reach the opsoiation.
Figure 8 also shows that the lower populations achieve arlaoinag
value in fewer NFE than the larger population runs, althotighould
be noted that the smallest population of 8 misses the optisalation
by less than a tenth of a percentage point. Furthermore,hinege in
drag seems to level before 7000 NFE for all population cases.

The second experiment looked at the effect of a changingorand

seed, which defines the initial starting point of the soluti¢-igure 9
shows the effect of four random seed solutions that were fTinis
experiment was conducted to study the effect of how a chgngin-
dom seed value would affect convergence and if differenttgmis were
found (various local minima, etc.). As can be seen, this sandeed
study showed very little variation in the minimal value ateal, while
only slight differences in convergence speed are seen. hithis true
even in the case where due to the chosen starting point & talex 2500
NFE to indicate any drag savings. This study was run with aifztijon
size of 10.

Figure 9 shows that a drag reduction of 1.03% (Drag = -3.13sN) i

achieved during the cruise-flight condition (100 kt,fldp). This means
that the winglet operates successfully at the rest of thatfégvelope,
even if it is not optimized for those other flight conditionBrag re-
duction due to the winglet during high-lift coefficient thealling flight

(50 kt, +&flap, 45 bank), which will be introduced later, resulted in a

drag reduction of 1.41% (Drag = -2.42 N). This is a very smadrge
in drag, which is expected due to the fact that designing ayhetrfor
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Fig. 9: Single-objective random seed analysis (populatiosize = 10)

=—S5ingle Objective Winglet
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Speed

Thermal Core Strength [m/s]

Fig. 10: Percent change in cross-country speed between bérse
Janus B and single-objective optimized winglet versus the
thermal core strength.

cruise only demands minimal area, therefore minimal profiifgy. In-
terestingly, the focus on cruise also appears to favour aamagle of
nearly 48 degrees. The cant angle is a compromise of the eed t
reduce the profile-drag penalty of the vertical winglet, ilsecuring
whatever small savings of the relatively small induced dragings of
the nonplanar geometry. Figure 10 provides informationuath@w
the optimized winglet effects the average cross-counteedpof the
glider. The average cross-country speed is increased 2dP0.6%
for a weak (2 m/s core strength) and strong (8 m/s core stigitiggr-
mals, respectively. Table 3 provides the final variable eslfound in
this minimization study, which used a population of 10. Auldfially,
Fig. 11 provides a visual creation of the final winglet. Itrsportant

to recall that the toe angle is defined with respect to thedysi@amic
AoA. The PSU 094-97 airfoil has a zero-lift angle of attacatthovers
around -4.8with respect to the airfoil chord for most Reynolds num-
bers. Therefore, a -128erodynamic angle of attack toe angle actually
refers to a +2.7geometric toe out.

Multi-Objective Winglet Design with e-MOEA

With the preliminary single-objective study complete, tbendation
was laid to move on to a multi-objective study. As has beeteraied
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Table 3: Final winglet dimensions from single objective stdy

Transition span, m 0.061
Height, m 0.416
Cant angle, deg 48.5
Root chord, m 0.1524
Taper section 3 0.35
Sweep section 3, deg 0.22
Taper section 4 0.96
Sweep section 4, deg 16.69
Toe angle, deg -1.8
Twist, deg 1.26

Fig. 11: Final winglet obtained from single-objective stug

before, the winglet design problem for a sailplane is molitfiective
in nature. Therefore, utilizing the unique abilities of a B® seems
rather appropriate. Before this study commenced, propentain was
given to ensure the problem formulation was laid out colyeét two-
objective study was thoroughly investigated: i) miniminéat drag of
the aircraft at fast cruise, ii) minimize total drag of thecaaft at a
standard thermalling velocity. A fast cruise speed of 10(bkt4 m/s)
was selected as in the single-objective study. This alsesponded to
the same -Zflap setting of the Janus B'’s airfoil. The thermal velocity
was selected to be 50 kt (25.7 m/s) with a load factor of 1.4hKb
angle of 45). A positive 8flap setting is typically used by pilots at this
flight condition. This velocity was determined by discugsacommon
thermalling speeds with Janus B owners. Figure 12 shows itite fl
envelope with the two objectives highlighted.

Points to Optimize
/ \ Total Dragff
/‘""/J-
V., ch]s& /z
climb
Drag 4
y
I":ﬁ-l
" Profile Drag
}-=
\ =
. - /"'{/
wl T ‘_____.-ﬂ"(__/
S o 3
x..____P-::______ - Induced Drag
Velocity

Fig. 12: Multi-objective selection on flight envelope
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With these two objectives, particular attention was giwethe pop-
ulation size, the selected random seed, the crossover hplitpahe
crossover distribution, and the bounds of the variablesalt expected
that, since two objectives were being addressed in this/sthé re-
quired simulation time would have to be significantly inced. There-
fore, the maximum simulation time allowed was increased4tb@urs.

All simulations were run on a single core of a 2.8 GHz quad core
processor running Linux. At the end of this two-objectivedst a third
objective was added that focused on the minimization of dlo¢ bend-
ing moment addition due to the winglet. This was added duén¢o t
fact that since the Janus B has an existing structure thaorigisally
designed to support the design loads without a winglet.

Problem Formulation

The geometric construction of the optimization problemmirthe
single-objective study was also used for the multi-obyecstudies.
This was done in order to gain insights into the effect thahesbjective
has on the final solutions. As introduced earlier, four expents were
performed to determine acceptable optimizer settingshier gpecific
problem. At first, a population study was performed by logkét pop-
ulations of 50, 75, 100, and 200. Unlike CMAES, thé\lOEA does
not work efficiently with small populations. The four poptite sizes
considered were based on standards recommended by themavef
the optimizer. A typical random seed analysis was also peed to
ensure that it does not have a major impact on the final Pai@tbgo-
lution. A crossover distribution study was also performéithwalues of
10 and 15. Only two values were considered because they hete/d
recommended settings. Finally, a crossover-probabititgyswas per-
formed at two different population values. The investigateossover
values were 0.6, 0.8, 0.9, and 1.0.

Three constraints were used on this problem’s formulatibtost
importantly, a span constraint was employed. Originalig danus B
sailplane had a span of 18.2 m. Therefore, no population reeméas
able to produce results, if it had a span greater or less tieoriginal
18.2 m. The second constraint was on the tip chord of the wingl
This was set due to manufacturability considerations alosivedd only
designs with a tip chord greater than 5.08 cm to be includethén
population. The third constraint enforced the common-sente that
the sweep of the winglet tip section should be greater thasweep of
the first winglet section.

£-MOEA Results: Two-Objective Optimization

In the following sections, the optimal values are given i firm of
Pareto fronts. For the present two-objective study, theig-abjective
is the percent change of the aircraft drag during fast craisd the x-
axis represents the percent change in drag during a thémmé&ight
condition. In order for a winglet to successfully ‘work’,should pro-
duce a reduction (negative change) in drag for both objestiOnly
a portion of the non-dominated population members that cm@phe
Pareto front will successfully ‘work’ according to this dgfion. It is
important to remember that each of these population mendretke
front represents a unique winglet design for the Janus B fihaése-
lection process will be addressed later, as it is highly ddpat on the
designers’ goals and preferences.

In order to generate the proper settings for this type of lprotusing
thee-MOEA, several studies were performed prior to the final ysial
Before the optimizer is run, a random seed value, betweendOlan
is selected to seed the initial population used in the algori Five
random seed values were investigated for a population of 0@ the
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Fig. 14: Multi-objective crossover probability analysis. (population
size = 100)

simulations were allowed to last for 10,000 NFE ( 23.5 haukdl)other
settings were kept as defaults for this analysis. Of the fezlvalues,
it can be seen in Fig. 13 that higher random seed values @onae
‘optimal’ Pareto fronts. Ultimately, a value of 0.8 was szl for the
rest of the analysis, since it was the originally recommendgue and
because it performed among the top of the tested values.

Next, a suitable setting for the crossover probability wetednined.
This setting describes how often a population member igfbtoc mate
with another population member during the analysis. Alddaset-
tings range between 0.6 and 1.0. Four values were investigeithin
these constraints, see Fig. 14. In the end, a crossoverhplibpaf 0.9
proved to generate the best Pareto front for the given cingdr It can
be rationalized that the reason why a higher crossover pititiygpro-
duces better results at the 10,000 NFE mark is due to thelatthe
population is being forced to search the solution space atra napid
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pace. The cases of lower crossover probability are moregpimikeep
older population members in the analysis for more generstiohich
slows the search speed of the optimizer. The population amctibn-
evaluation limit were kept the same as for the random seety.std
crossover probability test was not run for the CMAES optenidue to
the fact that mutation and mating is controlled in a différeny than
for thee-MOEA solver.

Crossover distribution refers to how a population memberehanat-
ing partner selected for itself. As for the crossover disttion, solver
guidelines recommend either a value of 10 or 15. As can be iseen
Fig. 15, both 10 and 15 result in relatively similar Paretonfs for
these settings. However, the value of 10 shows a slightlyeroptimal
front and was therefore selected.

Finally, and most importantly, a population study was penfed. Se-
lecting the correct population setting is always a compsentietween
a well-spread solution and the performance of the Paretat fifier
10,000 NFE. The Pareto fronts seen in Fig. 16 highlight ttade-off.
The Pareto front associated with a population of 200 cle@sylts in
the Pareto front that contains the most wide-spread solsitidowever,
it is also one of the worst in terms of convergence relatiiaéoPareto
fronts obtained for other population sizes. A populationl6d was
selected because its solution provided the best comprdmeisecen a
well-spread front and relative convergence for a given NF.|

The final two-objective Pareto front is shown in Fig. 17. Asswa
expected, the final Pareto front produces a well-spreadisolthat
contains population members, i.e. winglet designs, whiotkvat both
conditions as well as at only one condition. As can be expedce
design that reduces drag at the cruise objective does the &arthe
thermalling objective. However, this does not hold true dliger way
around. Almost half of the solutions on the Pareto front ¢/igd-
creases in drag during cruise but significant decreasesam diuring
thermalling. A more detailed investigation of how indivalwariables
change over this front may provide insight into why some pagion
members work efficiently and others seemingly do not. Hagjtting
the effect of each variable would be beyond the scope of thiEep
Therefore, only two variables will be discussed, i.e. heighd root
chord of the winglet, as these two variables are the strarmfygers in
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affecting the final winglet performance. The results showfigs. 18
and 19 help shed light on the importance of these variables figures
show the individual make-up of each population member kyrngethe
x-axis to the percent change of the thermal objective (Obe&), and
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Fig. 19: Effect of winglet root chord on two-objective Pareb front

to remain as large as possible until thermal objective \wahiie3.5% are
reached. This is a very interesting result and is most likétsibuted
to the fact that an increase in bending moment is not takenadot
count. Since this winglet is being designed for an existaitpkane, it
is beneficial to minimize the addition to the root bending neatdue

by setting they-axis to the variable value associated with the Paretoto the winglet for structural considerations. Since thigotive is not

front population member at that value of the thermal objectin these
figures, it can be seen that the variation in height and chead to sig-
nificant changes in thermal drag savings, more so than afleobther
variables. From these figures, two simple conclusions cadr&en:
i) in order to achieve a larger reduction in drag during thedfimg, a
taller winglet and a larger root chord are necessary, ii)radpce a
more effective winglet at high speeds, a smaller winglehwismaller
root chord (less wetted area) is advantageous. The latseredtion is
also exemplified by the single-objective study. While thetrchord is
gradually changing over the varying thermal objective height wants
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yetin place, the optimizer is unable to determine that wahbeights of
1.52m are most likely not feasible and simply impracticakfd@e the
bending-moment objective is added, an example designtgridoom

the Pareto front is performed.

An a posterioriselection is highly dependent on the designer’s pref-

erences. If the designer values drag reductions at cruesglspver ther-
mal speeds, it is apparent how to select a design with thoskbudes.
The same holds for a designer looking for a large increaskamtal
performance. In order to exemplify these extremes, thriferdnt de-
signs are selected and sketched to provide guidance farefdesign
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Fig. 20: Selected winglets obtained from two-objective stily
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Fig. 21: Speed polar of baseline and configuration with wingit A

selections. Figure 17 has three population members sd|eceA, B,
and C designs. Designs A and C are meant to cover the extrdtrties o
‘working’ winglet possibilities, while design B providescampromise
between the two. The sketches of these winglet design pligstbare
illustrated in Fig. 20. The speed polars of the baseline aingjlat A
are shown in Fig. 21. Small differences are visible in the kpeed
region, which is in line with the data presented in Fig. 17thalgh
the speed polars of winglets B and C are virtually indistisgable
from winglet A, the differences in the subsequent crossittguspeeds
are pronounced in Fig. 22. All three winglet designs prodities large
performance advantages over the baseline during weak atlergcon-
ditions with thermal core strengths of less than 4 m/s. Algioless
pronounced, they are all able to maintain that advantage éueng
stronger thermals. Please note that thermal core stresgftle ivertical
velocity of the air, which can differ considerably from thetwal climb
rate. For example, the configuration with winglet A achieeésb
rates of 0.91 m/s and 6.17 m/s for thermal-core strengthsnafs2and
8 m/s, respectively. Winglet A, whose dimensions are ligtetable 4
together with those of winglets B and C, is considered to tilageest
performance improvement with respect to cross-countrgdperl his
suggests that more emphasis should be given to minimiziag dur-
ing thermalling conditions while still ensuring that no iease in drag
occurs at high cruise speeds.

£-MOEA Results: Three-Objective Optimization
With the addition of the bending-moment objective, further
sight is expected regarding the large winglet heights seethe fi-
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Fig. 22: Percent change in cross-country speed between bése
Janus B and selected winglets A, B, and C versus the ther-
mal core strength

Table 4: Final dimensions of winglet A, B, and C from two-
objective study

Variable Winglet A | WingletB | Winglet C
Transition span, m 0.0609 0.0611 0.0620
Height, m 1.469 0.835 0.793
Cant angle, deg 78.3 69.1 67.9
Root chord, m 0.245 0.257 0.223
Taper section 3 0.305 0.333 0.312
Sweep section 3, deg  1.69 6.79 2.92
Taper section 4 0.698 0.688 0.767
Sweep section 4, degy  7.96 8.56 7.67
Toe angle, deg -3.41 -2.13 -2.12
Twist, deg 1.12 1.18 1.90

nal two-objective Pareto front. The resulting Pareto frimom the
three-objective study using a population size of 100 candas sn
Figs. 23 and 24 after 10,000 NFE. Since it is difficult to real three-
dimensional plot on paper, two projected side views are stk fol-
lowing. The traditional Obj1. vs. Obj2. plot is shown in F&B, while
the effect of the root bending moment on the Pareto surfabégls
lighted in Fig. 24. As expected, winglets that yield imprdwaermal
performance produce larger root bending moments. When aongp
cruise and thermal drag tradeoffs, however, configuratiagtisthermal
drag reductions of about 2% to 4% seem to also have benefitaisec
drag. As was shown for the two-objective study, Fig. 25 thates how
the winglet height is affected by a change in the Pareto ffonthe
three-objective case. Overall, the winglet heights areessed signif-
icantly to around 3.5 feet (1.07m) compared to the two-dhjecase
with nearly 5 feet (1.55m). Based on these criteria thregleis, D, E,
and F, were chosen as examples. Their thermal and cruiseldaages
over the baseline are indicated in Fig. 23. Their geometia dre sum-
marized in Table 5. The speed polar of winglet D is shown in garia
son to the baseline in Fig. 26. Just as with the two-objecgselts, the
speed polars of the other two designs are very similar, yeatterage
cross-country speed differs, especially when modelingkwegather
conditions as shown in Fig. 27. Overall, winglet D seems tuvjole
the best cross-country performance under weak weatheitmrsdand
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Variable Winglet A | Winglet B | Winglet C % E
Transition span, m 0.0609 0.0615 0.0709 g F 3
Height, m 1.087 1.042 1.001 & wf
Cant angle, deg 74.1 74.6 74.5 o
Root chord, m 0.227 0.200 0.154 § 1
Taper section 3 0.48 0.51 0.46 (5] |
Sweep section 3,degy 2.6 1.3 5.2 ® 7 5 5 P 5 g ? 5
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without any significant penalties when stronger thermatsnaodeled,
although interestingly winglet E seems to perform sligtustter with

thermal core strengths in excess of 4 m/s. Nevertheless,tkeegh it

is about 40 cm shorter than winglet A, winglet D exhibits adasver-
age cross-country speed over the entire modeled thermalstength
range. At this point of the study, no distinct charactetis@n be as-
sociated with this performance advantage. The outcomei®fthdy,

however, is a reflection of the complexity of the possibleigiespace
that is only very limitedly described with the chosen thrégotives.

Conclusions

An aircraft design code, iFly, that uses an efficient and eteu
potential-flow solver based on distributed vorticity elensewas cou-
pled with the single-objective CMAES and multi-objectigeMOEA
evolutionary strategies with the intent to study the feifigitof using
such a coupled methodology for advanced winglet design. tél tf
three objectives were considered: i) minimizing total @fcdrag dur-
ing high-speed cruise, ii) minimizing total aircraft dragrishg high-lift
thermalling flight, and iii) minimizing the root bending mem: ad-
dition due to the winglet. While this combination of objeets may
not be the most relevant and pertinent for competition kaikp de-
sign, the main goal of this work was to explore and demorestttat
evolutionary-based design and optimization of sailplamglets is fea-
sible on today’s desktop computers.

Differences between the final winglet designs from the sigl
multi-objective studies are apparent. Each time an objeetas added,
the resulting Pareto front reflected that change. Movinmftioe single-
objective study to the multi-objective study, it becomegdent that
the average cross-country speed is affected more benfioyateduc-
ing the thermalling drag while maintaining near constanise drag
compared to solely focusing on reducing cruise drag. Intcod) the
third objective of wing-bending moment leads to limitadn winglet
height without necessarily resulting in performance latians.

The importance of thermal drag with respect to average €ross

country speed compared to cruise-drag changes is also rsegpny

the findings of the multi-objective study. For example watgh, which

primarily reduces thermalling drag with negligible inflwenon cruise
performance, has significantly higher gains in averagesecosintry
speed during weak weather conditions in comparison wittgleis B

and C, which lead to smaller gains during thermalling, brgéa ones
during cruise. These differences, however, diminish wittréasing
thermal-core strengths, although all three designs stileoticeable
advantages over the baseline.

Overall, results obtained are promising with respect tortiemen-
tation of evolutionary algorithm optimizers for sailplanenglet design.
It is important to note that these designs were found duiimgigtions
that took less than 24 hours to complete on a convention&taigsom-
puter. Future work will be directed towards the performan€éhe
computed designs compared to existing winglets as welleaadhition
of other direct objectives such as the average cross-gospéed.
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