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Abstract

Winglets are designed for the Janus B sailplane through the coupling of an aircraft design code that uses a high-order
potential-flow solver with single-objective and multi-objective evolutionary algorithm optimization methods. The use
of the single-objective optimizer, Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES), serves as a step-
ping stone to employing a multi-objective optimizer, the epsilon-dominance Multi-Objective Evolutionary Algorithm
(ε-MOEA). The multi-objective evolutionary algorithm prove s to be successful in designing several winglets with favor-
able changes in performance. For example, one winglet generated in a two-objective study was able to achieve a 0.1%
cruise drag reduction and a 4.5% thermal drag reduction; this results in a peak cross-country speed improvement of
5.5% during weak weather conditions with maximum thermal core strengths of 2 m/s and 0.6% during strong weather
conditions with maximum core strengths of 8 m/s. While the design methodology is far from being fully matured, it
provides a solid foundation for future research.

Nomenclature

AoA = Angle of Attack [deg.]
b = span [m]
CDP = profile drag coefficient average over span
cl = two-dimensional lift coefficient
CL = three-dimensional lift coefficient
c = chord [m]
D = drag [N]
E✭t✮ = archive population
e = span efficiency
f = objective function
h = winglet height [m]
∆K✭h✮ = induced-drag factor dependent on height of winglet
M = Mach number
P = solution
P✭t✮ = traditional evolutionary algorithm population
S = planform area [m2]
VCR = crossover velocity [m/s]
W = weight [N]
ρ = density [kg/m3]
ε = epsilon-dominance, hyper-volume dimension

Introduction
The addition of winglets to high-performance sailplanes has become

common practice within the soaring community. Examples arethe
Schempp-Hirth Discus 2 or the Ventus 2. In order to have performance
enhancing winglets, these have to be tailored for each particular type of
sailplane due to the complex flow conditions that exist near awingtip.
An additional complication is the relatively challenging and diverse
mission profile typical for sailplanes that operate over a wide range
of lift coefficients at high- and low-speed flight during inter-thermal
cruise as well as thermals for altitude gain, respectively.This requires
a relatively elaborate design process that generally relies heavily on the
personal experience of a designer. If designed incorrectly, a winglet can
easily lead to a performance penalty rather than an improvement.

Brief Overview of Winglet Design Methods
While Whitcomb generated the framework for the design and imple-

mentation of winglets to aircraft in the 1970s [1], much has changed
since then in the winglet design process. Of particular interest is
the work by Maughmer concerning the realm of sailplane winglet de-
sign [2]. The early design philosophy was based on a crossover-point
methodology that analyzes the trade-off between the reduction in in-
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duced drag and the penalty of the added profile drag of the winglet, as
shown in Eq. 1:

∆Dinduced✰∆Dprofile ❂ 0 (1)

This relation leads to the crossover speed,VCR, given by Eq. 2, which
provides an equation for a velocity that satisfies Eq. 1. It isimportant
to note that this relation is a function of the induced-drag factor,K✭h✮,
which is primarily a function of the winglet height,h.

VCR❂

s

2W
ρb

s

∆k✭h✮
π∆hcCDP❀WL

(2)

When designing the winglet, Maughmer originally set the crossover
speed,VCR, slightly higher than the cruise speed to ensure that the added
profile drag due to the winglet caused no flight performance penalty in
the regular operational range. Ultimately, a modified crossover-point
method was developed in Ref. 3, which takes into account other geo-
metric effects than just the winglet height.

Recent work by Takenaka et al. [4] provides a foundation of us-
ing a multi-objective evolutionary algorithm to design winglets for
a transport aircraft outside of conventional design norms.They fol-
low a very complex winglet-design process, which involves expensive
high-fidelity Computational Fluid Dynamics (CFD) and Computational
Structural Dynamics (CSD) coupled with an evolutionary algorithm
and several data mining techniques. It is important to note in their
study that only one flight condition was analyzed, i.e. cruise atM❂ 0✿8.
A total of two design objectives were pursued by Takenaka et al. [4]:
i) minimizing block-fuel used and ii) maximizing the take-off weight.

Multi-Objective Evolutionary Algorithms (MOEA)
In essence, an evolutionary algorithm optimization methodis a

stochastic search method, which computationally simulates the natu-
ral evolutionary process, typically drawing from the Darwinian concept
of ‘Survival of the Fittest’. Evolutionary algorithms are generally com-
prised of population members that search the possible solution space.
These members are manipulated by a set of operators (mutations, mat-
ing, etc.) and evaluated by some type of fitness function. This fit-
ness function determines, which members survive and move onto the
next generation of the solution. Theoretically, this process is utilized to
search a solution space until an optimum is found. In practice, however,
a time constraint typically limits the number of function evaluations
(NFE), and thus only an ‘acceptable’ solution is found. Multi-Objective
Evolutionary Algorithms are a feasible optimization approach for the
design of winglets of sailplanes that have to satisfy a wide range of
design objectives. Multi-objective problems lead to a set of solutions
rather than one unique solution. This set of solutions is found through
the use of Pareto-optimality theory [5]. Pareto-optimal solutions are
those, which when evaluated, cannot be improved without adversely
affecting at least one of the objectives. The final optimal selection re-
quires the decision maker to choose from the seta posteriori and to
weigh the tradeoff between the objectives exemplified by thesolution
space. Evolutionary algorithm optimization methods have several ad-
vantages over traditional deterministic optimization methods, such as
calculus/gradient-based, Greedy, or hill-climbing, whenthe solution
space is unknown and/or of non-linear form with multiple peaks and
valleys. This is indeed the case for winglets that have a multitude of
design parameters including height, taper, twist, along with cant, toe,
and sweep angles.

Fig. 1: Sketch of the Janus B sailplane

Contributions of this work

This work presents an efficient computational tool that has the abil-
ity to design a winglet that offers performance gains comparable to
designs produced using a conventional, i.e. experience-based, design
approach. The efficient computational tool that is used in this design
process couples an aircraft design code, entitled iFly [6,7], which uses
a higher-order free-wake potential-flow solver entitled FreeWake [8],
with the multi-objective evolutionary algorithm optimizer ε-MOEA [9]
(epsilon-dominance Multi-Objective Evolutionary Algorithm).

Two primary studies are considered that provide a direct applica-
tion of the coupled design code/optimizer package to the design of a
winglet for the Janus B sailplane, which is a 1978 sailplane design
without winglets, see Fig. 1. The first study lays the foundation for
implementing a multi-objective optimizer by investigating the feasi-
bility of integrating a single-objective evolutionary algorithm, entitled
CMAES (Covariance Matrix Adaptation Evolutionary Strategy) [10]
with the aircraft design code iFly [6, 7]. The objective of this initial
study is to gain experience with the integrated design approach of flight-
performance prediction and evolutionary optimization algorithms. In
general, modern sailplanes have to perform well at high angles of at-
tack during thermalling and high-speed flight during cruisebetween
thermals. These diverse requirements lead to the second part of the
study that uses a multi-objective optimization algorithm that is based
on anε-MOEA/performance prediction tool.

Using this framework, the second study initially explores two design
objectives by optimizing for i) minimizing total aircraft drag at high-
speed cruise, and ii) minimizing total aircraft drag duringthermalling
flight. After this initial study is concluded, a third objective is added
as iii) minimizing the root bending moment addition due to a winglet.
With these set objectives, the evolutionary algorithm optimizer yields a
family of non-dominated solutions, also referred to as a Pareto-optimal
set, from which the user performs a selectiona posteriori. This sec-
ond study provides insight into the state-of-the-art of using a multi-
objective evolutionary algorithm optimizer that is tightly coupled with
an aircraft design code. While design objectives ii) and iii) may not
be the most relevant objectives regarding winglet designs for competi-
tion sailplanes, the focus on objectives other than maximizing the av-
erage cross-country speed allows the exploration and demonstration of
the multi-objective design optimization. Furthermore, itallows greater
flexibility in response to the changing competition rules that allow vary-
ing wingtip devices. The value of this work lies in the fact that a suite
of advanced winglet designs can be obtained in a reasonable time with
the proposed methodology.
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Numerical Methods
This work applies a coupled methodology of an aircraft design code

and a multi-objective evolutionary algorithm optimizer. The methods
are coupled through a simple C script. Significant attentionwas given to
the selection of the individual parts. The selected performance predic-
tion tool is a three-dimensional potential-flow solver entitled FreeWake
that was developed by Bramesfeld and Maughmer [8]. The perfor-
mance code is a subset of an aircraft design tool entitled iFly developed
by Kody and Bramesfeld [6,7]. The selected optimizers are the Covari-
ance Matrix Adaptation (CMA) Evolutionary Strategy by Hansen and
Ostermeier [10] and theε-MOEA (epsilon-dominance multi-objective
evolutionary algorithm) by Deb et al. [9]. In the following,each com-
ponent of the overall coupled method is introduced.

Aircraft Design Code, iFly
Since evolutionary algorithm optimization methods typically require

thousands of function evaluations, selecting a performance prediction
method that is both time efficient and accurate is an important task.
Furthermore, this code is intended for users who may not haveac-
cess to high-performance computer clusters. The need for fast turn-
around times of simulations eliminates the need for high-fidelity CFD
simulations for the performance prediction method due to the asso-
ciated higher computational cost and hardware-infrastructure require-
ments. Therefore, a three-dimensional potential-flow solver was cho-
sen that had previously been validated and that is capable ofresolving
the complex flow around a winglet. This is the reason for coupling the
selected evolutionary algorithms, which are further described below,
with the aircraft design code iFly [6, 7]. A central element to the air-
craft performance model is the aerodynamic prediction module rooted
in a potential-flow method called FreeWake, developed by Bramesfeld
and Maughmer [8]. FreeWake predicts the spanwise lift distribution
and induced drag of the wing and empennage. Based on the spanwise
lift-distribution prediction and the local chord-based Reynolds numbers
along the wing span, the profile drag is determined from look-up ta-
bles. A simple stall prediction model, outlined by McCormick [11],
was added to the potential-flow code and enhances the accuracy of the
aerodynamic solution with insignificant computational cost. In addi-
tion, the potential-flow solution finds a trim solution for the horizontal
tail, thus effectively capturing any trim-drag effects.

The particular approach in FreeWake uses elements with distributed
vorticity to represent the wing and its wake. For the wing model,
the spanwise distribution of the bound circulation is described using a
second-order spline along each spanwise element. In a sense, the mod-
eling of the bound circulation is very similar to that of Horstmann’s
Mutliple-Lifting Line method [12], although FreeWake has atrailing-
edge condition. In addition, the wake consists of a continuous vortex
sheet with a spanwise vorticity distribution that varies linearly along
each element. Even as a continuous vortex sheet, the wake canbe of
non-planar shape and, for example, model the rollup of the shear layer
downstream of a wing. For the present study a prescribed model was
used that extended the trailing edge along the free stream velocity vec-
tor in order to minimize the computational effort. Experience indicates
negligible differences in performance predictions for aspect ratios typ-
ical for sailplanes. A further strength of the employed potential-flow
method lies in its continuous nature that significantly reduces computa-
tional costs for load resolutions similar to that of other potential meth-
ods, for example vortex-lattice methods. In addition, the continuous
model of the wake vorticity shows improved numerical stability due to
the absence of singularities as are commonly encountered with conven-

Fig. 2: Concept of the Covariance Matrix Evolutionary Strategy
(CMAES). 1) Original Search Radius, 2) Original Centroid,
3) Initial Population Distribution, 4) Moved Centroid, 5)
‘Selected’ Population Members, 6) Old Search Radius, 7)
New Search Radius.

tional vortex-lattice or panel codes.
In addition to drag from the wing and empennage, the contributions

of other aircraft elements are predicted using either corrected flat-plate
skin friction approximations or other semi-empirical approaches. For
example, the fuselage drag is estimated using a strip methodto de-
termine the skin-friction drag of the exposed surface area.Other cor-
rection factors account for pressure-drag and interference losses. The
airfoil data used are based on experimental results in Ref. 13 of the
FX 67-K-170 airfoil that is used on the Janus B. Various flap settings
and Reynolds numbers ranging from 700,000 to 3,000,000 werecon-
sidered. The winglet airfoil used was the PSU 94-097 airfoil, an airfoil
specifically designed for low-speed winglets and tested at The Penn-
sylvania State University Low-Speed, Low-Turbulence WindTunnel at
Reynolds numbers ranging from 240,000 to 1,000,000 [14].

Covariance Matrix Adaptation Evolutionary Strategy (CMAE S)
The CMA Evolutionary Strategy (CMAES), devised by Hansen and

Ostermeier [10], is a stochastic method for real-parameteroptimization
that relies on an adaptive covariance matrix to overcome many of the
hurdles that exist for typical Newton or gradient-based optimizers, for
example badly-scaled, non-linear, and highly non-separable objective
functions. The overall idea of CMAES is that it utilizes thisadaptive
matrix to update its search space based on the previous generation’s
best population members. It also stores information about the move-
ment of the population. With this information, CMAES generates an
adaptive path, which better controls the convergence of thesolution.
The CMAES is also designed to perform very well with small popula-
tion sizes (✙ 10). Therefore, it is advantageous to problems with large
objective function simulation times.

The basics of the CMAES optimizer can be summarized in one sim-
ple figure. Figure 2 shows three basic steps for the CMA strategy. The
first step, shown in (a), organizes information about the current or ini-
tial population of search points. The second step performs aselection
and recombination based on the previous generation, as shown in (b).
Also shown in (b) is the movement of the mean value of the search
distribution (represented by the cross). The third step, shown in (c),
exemplifies the actual movement of the search radius. This process
essentially repeats and searches the solution space for theglobal mini-
mum. Unlike the multi-objective function described below,the single-
objective CMAES provides only one solution for one objective to the
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Fig. 3: The ε-Dominance concept

user. While this removes the decision-making process, which is advan-
tageous for non-experienced designers, it solely optimizes the design
for one objective.

Epsilon-Dominance Multi-Objective Evolutionary Algorit hm (ε-
MOEA)

As stated previously, a multi-objective evolutionary optimizer pro-
vides a significant advantage over a single-objective optimizer due to
the fact that multi-objective optimizers are able to handlea search and
optimization problem with multiple conflicting objectives. A multi-
objective optimizer also generates a family of non-dominated solutions,
otherwise known as the Pareto-optimal solutions (Pareto-optimal front),
which provide the designer with a relationship between the multiple
conflicting objectives rather than one single solution. Taking advantage
of the Pareto-optimal solutions produced by the multi-objective opti-
mizer allows the designer to avoid a preference-based and weighted
system that would prefer one objective over the others priorto the sim-
ulation.

Within the field of MOEAs, there are two distinct goals that the al-
gorithm should meet: i) convergence to the true Pareto-optimal front,
and ii) generate a well-distributed set of non-dominated solutions. All
MOEAs satisfy these requirements, however, most MOEAs are some
type of a compromise between providing a well-distributed set of so-
lutions and the speed of convergence for a specific application. There-
fore, it would seem very advantageous to find an appropriate MOEA,
which provides a good compromise between these two spectrums and
the problem at hand. This logic is what led to the decision to usingε-
MOEA for the winglet-design problem as computational efficiency is
an important factor during a design process and so is ensuring that all
design possibilities are fairly analyzed.

The ε-MOEA is a steady-state multi-objective evolutionary algo-
rithm based on theε-dominance concept that was introduced by Lau-
manns et al. [15]. This efficient approach provides the user with a well-
distributed set of solutions. Within the algorithm, the search space is
divided into a number of grids of size (hyper-boxes) that maintain di-
versity by only allowing one solution to occupy a hyper grid at a given
time. Theε-dominance concept is easily explained by Fig. 3. In a min-
imization problem of two objective functions, f1 and f2, a solution P
dominates an entire region PECFP, however, P alsoε-dominates the re-
gion ABCDA. Theε-dominance concept essentially encompasses all of

Fig. 4: The ε-MOEA procedure

theε-sized hyper-boxes that P’s traditional domination intersects. Fur-
thermore, if there are two solutions, 1 and 2, within the samehyper-box,
the solution closest to the minimization goal is the only survivor.

With an understanding of theε-dominance concept, theε-MOEA
procedure can be explained. Two co-evolving populations are featured
in the ε-MOEA: i) a traditional evolutionary algorithm (EA) popula-
tion P(t), and ii) an archive population E(t), as seen in Fig.4. As the
simulation begins, the initial EA population, P(0), is created, and the
archive population, E(0), is generated by theε-non-dominated solu-
tions of P(0). Next, two solutions, one from each population, are cho-
sen at random for mating to generate one or multiple offspring. Now
the offspring are compared to the EA and archive populationsto judge
whether or not they should be included to move onto the next genera-
tion. In order for the offspring to enter the EA population, the offspring
has to dominate, in the traditional sense, one or more of the existing
populations. If this is the case, the offspring replaces oneof the original
population members it dominated. If the offspring, on the other hand, is
dominated by any one member of the population, then the offspring is
not accepted into the populations. Entering the smaller archive popula-
tion relies on anε-dominance comparison in a similar manner as done
for the EA population comparison. If the offspring isε-dominated by
the archive population, then the offspring is not allowed toenter, how-
ever, if the offspring memberε-dominates the archive member, then the
offspring replaces the old archive member. This procedure is simulated
for a specified number of iterations or until convergence is achieved. At
that point, the archive population members are reported as the final so-
lutions. These final solutions form theε-non-dominated Pareto-optimal
front.

Results
Single-Objective Winglet Design with CMAES

Before taking the full step to solving the multi-objective nature of
winglet design, a single-objective optimization was performed of min-
imizing the total drag of the Janus B sailplane with the addition of a
winglet during fast cruise settings. The fast cruise speed was deter-
mined through consultation with Janus B owners. Based on these dis-
cussions, the selected fast cruise speed was 100 knots (51.4m/s). At
this speed, a typical flap setting of -4✍ is applied to the FX 67-K-170 air-
foil on the main wing. The fast cruise objective was selectedbased on
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Fig. 5: Single-objective selection on flight envelope

Fig. 6: Winglet angles [2]

Maughmer’s design methodology of designing the winglet to not hurt
performance at the fast cruise limit, which ensures that thewinglet will
have a positive influence on the aircraft during its entire flight envelope.
The significance with respect to the overall flight envelope and the pri-
mary contribution of profile drag for this design point are illustrated in
Fig. 5. At lower speeds than the optimization point, induceddrag will
be larger and an increasingly favorable impact of the winglet can be ex-
pected. For the present study, a total of ten parameters wereselected to
be optimized. Figure 6 illustrates four of these winglet parameters. The
remaining parameters, i.e. the winglet height, chord, and taper ratio, are
not included in the figure. Figure 7 shows four sections that constitute
the geometry specifications for the optimization problem: Section 1 is
the panel that serves as an initial transition from the existing main wing

Fig. 7: Winglet geometric sections

Table 1: Janus B simulation configuration

Wingspan 18.20 m
Wing Area 16.94 m2

Wing Loading 26.8 kg/m2

Weight 453.61kg/4448 N
Wing Airfoil FX 67-K-170
Winglet Airfoil PSU 94-097

Table 2: Variable bounds for optimization design space

Variable Lower Bound Upper Bound
Transition span, m 0.061 0.35
Height, m 0.1524 1.524
Cant angle, deg 45 90
Root chord, m 0.1524 0.479
Taper section 3 0.3 1.0
Sweep section 3, deg 0 25
Taper section 4 0.1 1.0
Sweep section 4, deg 0 30
Toe angle, deg -5 5
Twist, deg 0 10

to the winglet, Section 2 provides the sharpest transition between the
winglet and wing and has half of the cant angle than the actualwinglet,
Section 3 is the first panel of the winglet whose height is limited to
80% of the total winglet height, and Section 4 serves as the winglet tip
and comprises 20% of the total height. Table 1 highlights important
information regarding the Janus B used in the simulations.

Problem Formulation
In order to achieve the overall goal of finding the optimal winglet

geometry, which yields the minimum drag at the aircraft’s cruise speed,
a parametric study was performed to determine the effects ofpopulation
size and of the initial random seed values. Of these two experiments,
the one that is predicted to have the predominant effect on the solution
is population size. Therefore, an analysis was run for populations of 8,
10, 25, 40, and 100. It is important to keep in mind that when reaching a
population size of 100, computation time becomes a major factor for the
analysis. Therefore, a maximum run-time of 12-hours (whichleads to
a Number of Function Evaluations, NFE✙ 20❀000) was set as an upper
limit for all simulations. The parametric study also lookedat very small
population sizes since CMAES is reportedly well conditioned to run at
these population sizes. The final experiment involved a random seed
analysis of the initial variable dimensions. Four random seed analyses
were run to see the effect of variable initial values.

An important factor in this problem formulation is to define the up-
per and lower bounds for each variable, see Table 2. While thebounded
search space is rather large in most cases, this problem’s search domain
is relatively small due to the real-world constraints of this problem.
While several of these bounds were determined by trial and error, such
as height, tapers, toe angle (corresponding to the zero liftAoA), and
twist, the remaining ones were selected due to aerodynamic considera-
tions or real-world constraints. For example, the transition span’s lower
bound was set to 0.06 m. (0.2 ft.) for manufacturability reasons, and
its upper bound was set due to span limitations. The 0.35 m. (1.148 ft.)
was the distance of the wing that was ‘chopped’ off to make room for
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Fig. 8: Single-objective population study

the winglet itself. This is standard practice when designing winglets
for existing sailplanes due to existing span restrictions.The winglet
root chord’s lower bound was determined due to manufacturability rea-
sons, and the upper bound was set to the tip chord of the existing wing
design. The sweep of sections 3 and 4 were both kept less than 30✍ in
order to prevent cross-flow boundary-layer transition.

CMAES Results: Single-Objective Optimization

The first study focused on the influence of varying populationsize on
the final single-objective solution. The goal of this study was to deter-
mine which population produced the best results within the NFE limit,
and to determine which population converged fastest to the solution.
The objective value used in all simulations was the change intotal drag
of the aircraft from the conventional configuration (no winglet) to the
configuration with the winglet. Therefore, a negative deltadrag value
corresponds to a reduction in drag. Figure 8 provides insight regard-
ing the NFE that each population requires to reach the optimal solution.
Figure 8 also shows that the lower populations achieve a lower drag
value in fewer NFE than the larger population runs, althoughit should
be noted that the smallest population of 8 misses the optimumsolution
by less than a tenth of a percentage point. Furthermore, the change in
drag seems to level before 7000 NFE for all population cases.

The second experiment looked at the effect of a changing random
seed, which defines the initial starting point of the solution. Figure 9
shows the effect of four random seed solutions that were run.This
experiment was conducted to study the effect of how a changing ran-
dom seed value would affect convergence and if different solutions were
found (various local minima, etc.). As can be seen, this random seed
study showed very little variation in the minimal value attained, while
only slight differences in convergence speed are seen. Thisholds true
even in the case where due to the chosen starting point it takes over 2500
NFE to indicate any drag savings. This study was run with a population
size of 10.

Figure 9 shows that a drag reduction of 1.03% (Drag = -3.13 N) is
achieved during the cruise-flight condition (100 kt, -4✍flap). This means
that the winglet operates successfully at the rest of the flight envelope,
even if it is not optimized for those other flight conditions.Drag re-
duction due to the winglet during high-lift coefficient thermalling flight
(50 kt, +8✍flap, 45✍bank), which will be introduced later, resulted in a
drag reduction of 1.41% (Drag = -2.42 N). This is a very small change
in drag, which is expected due to the fact that designing a winglet for

Fig. 9: Single-objective random seed analysis (populationsize = 10)

Fig. 10: Percent change in cross-country speed between baseline
Janus B and single-objective optimized winglet versus the
thermal core strength.

cruise only demands minimal area, therefore minimal profiledrag. In-
terestingly, the focus on cruise also appears to favour a cant angle of
nearly 48 degrees. The cant angle is a compromise of the need to
reduce the profile-drag penalty of the vertical winglet, while securing
whatever small savings of the relatively small induced dragsavings of
the nonplanar geometry. Figure 10 provides information about how
the optimized winglet effects the average cross-country speed of the
glider. The average cross-country speed is increased 2.4% and 0.6%
for a weak (2 m/s core strength) and strong (8 m/s core strength) ther-
mals, respectively. Table 3 provides the final variable values found in
this minimization study, which used a population of 10. Additionally,
Fig. 11 provides a visual creation of the final winglet. It is important
to recall that the toe angle is defined with respect to the aerodynamic
AoA. The PSU 094-97 airfoil has a zero-lift angle of attack that hovers
around -4.5✍with respect to the airfoil chord for most Reynolds num-
bers. Therefore, a -1.8✍aerodynamic angle of attack toe angle actually
refers to a +2.7✍geometric toe out.

Multi-Objective Winglet Design with ε-MOEA
With the preliminary single-objective study complete, thefoundation

was laid to move on to a multi-objective study. As has been reiterated
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Table 3: Final winglet dimensions from single objective study

Transition span, m 0.061
Height, m 0.416
Cant angle, deg 48.5
Root chord, m 0.1524
Taper section 3 0.35
Sweep section 3, deg 0.22
Taper section 4 0.96
Sweep section 4, deg 16.69
Toe angle, deg -1.8
Twist, deg 1.26

Fig. 11: Final winglet obtained from single-objective study

before, the winglet design problem for a sailplane is multi-objective
in nature. Therefore, utilizing the unique abilities of a MOEA seems
rather appropriate. Before this study commenced, proper attention was
given to ensure the problem formulation was laid out correctly. A two-
objective study was thoroughly investigated: i) minimize total drag of
the aircraft at fast cruise, ii) minimize total drag of the aircraft at a
standard thermalling velocity. A fast cruise speed of 100 kt(51.4 m/s)
was selected as in the single-objective study. This also corresponded to
the same -4✍flap setting of the Janus B’s airfoil. The thermal velocity
was selected to be 50 kt (25.7 m/s) with a load factor of 1.41 (bank
angle of 45✍). A positive 8✍flap setting is typically used by pilots at this
flight condition. This velocity was determined by discussing common
thermalling speeds with Janus B owners. Figure 12 shows the flight
envelope with the two objectives highlighted.

Fig. 12: Multi-objective selection on flight envelope

With these two objectives, particular attention was given to the pop-
ulation size, the selected random seed, the crossover probability, the
crossover distribution, and the bounds of the variables. Itwas expected
that, since two objectives were being addressed in this study, the re-
quired simulation time would have to be significantly increased. There-
fore, the maximum simulation time allowed was increased to 24 hours.

All simulations were run on a single core of a 2.8 GHz quad core
processor running Linux. At the end of this two-objective study, a third
objective was added that focused on the minimization of the root bend-
ing moment addition due to the winglet. This was added due to the
fact that since the Janus B has an existing structure that wasoriginally
designed to support the design loads without a winglet.

Problem Formulation
The geometric construction of the optimization problem from the

single-objective study was also used for the multi-objective studies.
This was done in order to gain insights into the effect that each objective
has on the final solutions. As introduced earlier, four experiments were
performed to determine acceptable optimizer settings for this specific
problem. At first, a population study was performed by looking at pop-
ulations of 50, 75, 100, and 200. Unlike CMAES, theε-MOEA does
not work efficiently with small populations. The four population sizes
considered were based on standards recommended by the developer of
the optimizer. A typical random seed analysis was also performed to
ensure that it does not have a major impact on the final Pareto front so-
lution. A crossover distribution study was also performed with values of
10 and 15. Only two values were considered because they were the two
recommended settings. Finally, a crossover-probability study was per-
formed at two different population values. The investigated crossover
values were 0.6, 0.8, 0.9, and 1.0.

Three constraints were used on this problem’s formulation.Most
importantly, a span constraint was employed. Originally, the Janus B
sailplane had a span of 18.2 m. Therefore, no population member was
able to produce results, if it had a span greater or less than the original
18.2 m. The second constraint was on the tip chord of the winglet.
This was set due to manufacturability considerations and allowed only
designs with a tip chord greater than 5.08 cm to be included inthe
population. The third constraint enforced the common-sense rule that
the sweep of the winglet tip section should be greater than the sweep of
the first winglet section.

ε-MOEA Results: Two-Objective Optimization
In the following sections, the optimal values are given in the form of

Pareto fronts. For the present two-objective study, the y-axis objective
is the percent change of the aircraft drag during fast cruise, and the x-
axis represents the percent change in drag during a thermalling flight
condition. In order for a winglet to successfully ‘work’, itshould pro-
duce a reduction (negative change) in drag for both objectives. Only
a portion of the non-dominated population members that comprise the
Pareto front will successfully ‘work’ according to this definition. It is
important to remember that each of these population memberson the
front represents a unique winglet design for the Janus B. Thefinal se-
lection process will be addressed later, as it is highly dependent on the
designers’ goals and preferences.

In order to generate the proper settings for this type of problem using
theε-MOEA, several studies were performed prior to the final analysis.
Before the optimizer is run, a random seed value, between 0 and 1,
is selected to seed the initial population used in the algorithm. Five
random seed values were investigated for a population of 100, and the
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Fig. 13: Multi-objective random seed analysis. (population size =
100)

Fig. 14: Multi-objective crossover probability analysis.(population
size = 100)

simulations were allowed to last for 10,000 NFE ( 23.5 hours). All other
settings were kept as defaults for this analysis. Of the five seed values,
it can be seen in Fig. 13 that higher random seed values provide more
‘optimal’ Pareto fronts. Ultimately, a value of 0.8 was selected for the
rest of the analysis, since it was the originally recommended value and
because it performed among the top of the tested values.

Next, a suitable setting for the crossover probability was determined.
This setting describes how often a population member is forced to mate
with another population member during the analysis. Available set-
tings range between 0.6 and 1.0. Four values were investigated within
these constraints, see Fig. 14. In the end, a crossover probability of 0.9
proved to generate the best Pareto front for the given constraints. It can
be rationalized that the reason why a higher crossover probability pro-
duces better results at the 10,000 NFE mark is due to the fact that the
population is being forced to search the solution space at a more rapid

Fig. 15: Multi-objective crossover distribution analysis. (popula-
tion size = 100)

pace. The cases of lower crossover probability are more prone to keep
older population members in the analysis for more generations, which
slows the search speed of the optimizer. The population and function-
evaluation limit were kept the same as for the random seed study. A
crossover probability test was not run for the CMAES optimizer due to
the fact that mutation and mating is controlled in a different way than
for theε-MOEA solver.

Crossover distribution refers to how a population member has a mat-
ing partner selected for itself. As for the crossover distribution, solver
guidelines recommend either a value of 10 or 15. As can be seenin
Fig. 15, both 10 and 15 result in relatively similar Pareto fronts for
these settings. However, the value of 10 shows a slightly more optimal
front and was therefore selected.

Finally, and most importantly, a population study was performed. Se-
lecting the correct population setting is always a compromise between
a well-spread solution and the performance of the Pareto front after
10,000 NFE. The Pareto fronts seen in Fig. 16 highlight this trade-off.
The Pareto front associated with a population of 200 clearlyresults in
the Pareto front that contains the most wide-spread solutions. However,
it is also one of the worst in terms of convergence relative tothe Pareto
fronts obtained for other population sizes. A population of100 was
selected because its solution provided the best compromisebetween a
well-spread front and relative convergence for a given NFE limit.

The final two-objective Pareto front is shown in Fig. 17. As was
expected, the final Pareto front produces a well-spread solution that
contains population members, i.e. winglet designs, which work at both
conditions as well as at only one condition. As can be expected, a
design that reduces drag at the cruise objective does the same for the
thermalling objective. However, this does not hold true theother way
around. Almost half of the solutions on the Pareto front yield in-
creases in drag during cruise but significant decreases in drag during
thermalling. A more detailed investigation of how individual variables
change over this front may provide insight into why some population
members work efficiently and others seemingly do not. Highlighting
the effect of each variable would be beyond the scope of this paper.
Therefore, only two variables will be discussed, i.e. height and root
chord of the winglet, as these two variables are the strongest drivers in
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Fig. 16: Multi-objective population study

Fig. 17: Final two-objective Pareto front including selections of
winglets A, B, and C

affecting the final winglet performance. The results shown in Figs. 18
and 19 help shed light on the importance of these variables. The figures
show the individual make-up of each population member by setting the
x-axis to the percent change of the thermal objective (Objective 2), and
by setting they-axis to the variable value associated with the Pareto-
front population member at that value of the thermal objective. In these
figures, it can be seen that the variation in height and chord lead to sig-
nificant changes in thermal drag savings, more so than all of the other
variables. From these figures, two simple conclusions can bedrawn:
i) in order to achieve a larger reduction in drag during thermalling, a
taller winglet and a larger root chord are necessary, ii) to produce a
more effective winglet at high speeds, a smaller winglet with a smaller
root chord (less wetted area) is advantageous. The latter observation is
also exemplified by the single-objective study. While the root chord is
gradually changing over the varying thermal objective, theheight wants

Fig. 18: Effect of winglet height on two-objective Pareto front

Fig. 19: Effect of winglet root chord on two-objective Pareto front

to remain as large as possible until thermal objective values of -3.5% are
reached. This is a very interesting result and is most likelyattributed
to the fact that an increase in bending moment is not taken into ac-
count. Since this winglet is being designed for an existing sailplane, it
is beneficial to minimize the addition to the root bending moment due
to the winglet for structural considerations. Since this objective is not
yet in place, the optimizer is unable to determine that winglet heights of
1.52m are most likely not feasible and simply impractical. Before the
bending-moment objective is added, an example design selection from
the Pareto front is performed.

An a posterioriselection is highly dependent on the designer’s pref-
erences. If the designer values drag reductions at cruise speed over ther-
mal speeds, it is apparent how to select a design with those attributes.
The same holds for a designer looking for a large increase in thermal
performance. In order to exemplify these extremes, three different de-
signs are selected and sketched to provide guidance for future design

VOL. 37, NO. 3 July–September 2013 53 TECHNICAL SOARING



Fig. 20: Selected winglets obtained from two-objective study

Fig. 21: Speed polar of baseline and configuration with winglet A

selections. Figure 17 has three population members selected, i.e. A, B,
and C designs. Designs A and C are meant to cover the extremes of the
‘working’ winglet possibilities, while design B provides acompromise
between the two. The sketches of these winglet design possibilities are
illustrated in Fig. 20. The speed polars of the baseline and winglet A
are shown in Fig. 21. Small differences are visible in the lowspeed
region, which is in line with the data presented in Fig. 17. Although
the speed polars of winglets B and C are virtually indistinguishable
from winglet A, the differences in the subsequent cross-country speeds
are pronounced in Fig. 22. All three winglet designs provided the large
performance advantages over the baseline during weak thermalling con-
ditions with thermal core strengths of less than 4 m/s. Although less
pronounced, they are all able to maintain that advantage even during
stronger thermals. Please note that thermal core strength is the vertical
velocity of the air, which can differ considerably from the actual climb
rate. For example, the configuration with winglet A achievesclimb
rates of 0.91 m/s and 6.17 m/s for thermal-core strengths of 2m/s and
8 m/s, respectively. Winglet A, whose dimensions are listedin Table 4
together with those of winglets B and C, is considered to havethe best
performance improvement with respect to cross-country speed. This
suggests that more emphasis should be given to minimizing drag dur-
ing thermalling conditions while still ensuring that no increase in drag
occurs at high cruise speeds.

ε-MOEA Results: Three-Objective Optimization
With the addition of the bending-moment objective, furtherin-

sight is expected regarding the large winglet heights seen on the fi-

Fig. 22: Percent change in cross-country speed between baseline
Janus B and selected winglets A, B, and C versus the ther-
mal core strength

Table 4: Final dimensions of winglet A, B, and C from two-
objective study

Variable Winglet A Winglet B Winglet C
Transition span, m 0.0609 0.0611 0.0620
Height, m 1.469 0.835 0.793
Cant angle, deg 78.3 69.1 67.9
Root chord, m 0.245 0.257 0.223
Taper section 3 0.305 0.333 0.312
Sweep section 3, deg 1.69 6.79 2.92
Taper section 4 0.698 0.688 0.767
Sweep section 4, deg 7.96 8.56 7.67
Toe angle, deg -3.41 -2.13 -2.12
Twist, deg 1.12 1.18 1.90

nal two-objective Pareto front. The resulting Pareto frontfrom the
three-objective study using a population size of 100 can be seen in
Figs. 23 and 24 after 10,000 NFE. Since it is difficult to realize a three-
dimensional plot on paper, two projected side views are usedin the fol-
lowing. The traditional Obj1. vs. Obj2. plot is shown in Fig.23, while
the effect of the root bending moment on the Pareto surface ishigh-
lighted in Fig. 24. As expected, winglets that yield improved thermal
performance produce larger root bending moments. When comparing
cruise and thermal drag tradeoffs, however, configurationswith thermal
drag reductions of about 2% to 4% seem to also have benefits in cruise
drag. As was shown for the two-objective study, Fig. 25 illustrates how
the winglet height is affected by a change in the Pareto frontfor the
three-objective case. Overall, the winglet heights are decreased signif-
icantly to around 3.5 feet (1.07m) compared to the two-objective case
with nearly 5 feet (1.55m). Based on these criteria three winglets, D, E,
and F, were chosen as examples. Their thermal and cruise dragchanges
over the baseline are indicated in Fig. 23. Their geometric data are sum-
marized in Table 5. The speed polar of winglet D is shown in compari-
son to the baseline in Fig. 26. Just as with the two-objectiveresults, the
speed polars of the other two designs are very similar, yet the average
cross-country speed differs, especially when modeling weak weather
conditions as shown in Fig. 27. Overall, winglet D seems to provide
the best cross-country performance under weak weather conditions and
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Fig. 23: Obj. 1 vs. Obj. 2 of the final three-objective Pareto front
including selections of winglets E, D, and F

Fig. 24: Obj. 3 vs. Obj. 2 of the final three-objective Pareto front

Table 5: Final dimensions of winglet D, E, and F from three-
objective study

Variable Winglet A Winglet B Winglet C
Transition span, m 0.0609 0.0615 0.0709
Height, m 1.087 1.042 1.001
Cant angle, deg 74.1 74.6 74.5
Root chord, m 0.227 0.200 0.154
Taper section 3 0.48 0.51 0.46
Sweep section 3, deg 2.6 1.3 5.2
Taper section 4 0.54 0.55 0.82
Sweep section 4, deg 6.3 9.5 9.2
Toe angle, deg -1.60 -1.70 1.06
Twist, deg 4.89 3.80 4.54

Fig. 25: Effect of winglet height on three-objective Paretofront

Fig. 26: Speed polars of baseline and configuration with winglet D

Fig. 27: Speed polars of baseline and configuration with winglet D
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without any significant penalties when stronger thermals are modeled,
although interestingly winglet E seems to perform slightlybetter with
thermal core strengths in excess of 4 m/s. Nevertheless, even though it
is about 40 cm shorter than winglet A, winglet D exhibits a faster aver-
age cross-country speed over the entire modeled thermal-core strength
range. At this point of the study, no distinct characteristic can be as-
sociated with this performance advantage. The outcome of this study,
however, is a reflection of the complexity of the possible design space
that is only very limitedly described with the chosen three objectives.

Conclusions
An aircraft design code, iFly, that uses an efficient and accurate

potential-flow solver based on distributed vorticity elements was cou-
pled with the single-objective CMAES and multi-objectiveε-MOEA
evolutionary strategies with the intent to study the feasibility of using
such a coupled methodology for advanced winglet design. A total of
three objectives were considered: i) minimizing total aircraft drag dur-
ing high-speed cruise, ii) minimizing total aircraft drag during high-lift
thermalling flight, and iii) minimizing the root bending moment ad-
dition due to the winglet. While this combination of objectives may
not be the most relevant and pertinent for competition sailplane de-
sign, the main goal of this work was to explore and demonstrate that
evolutionary-based design and optimization of sailplane winglets is fea-
sible on today’s desktop computers.

Differences between the final winglet designs from the single-to
multi-objective studies are apparent. Each time an objective was added,
the resulting Pareto front reflected that change. Moving from the single-
objective study to the multi-objective study, it becomes evident that
the average cross-country speed is affected more beneficially by reduc-
ing the thermalling drag while maintaining near constant cruise drag
compared to solely focusing on reducing cruise drag. Introducing the
third objective of wing-bending moment leads to limitations in winglet
height without necessarily resulting in performance limitations.

The importance of thermal drag with respect to average cross-
country speed compared to cruise-drag changes is also supported by
the findings of the multi-objective study. For example winglet A, which
primarily reduces thermalling drag with negligible influence on cruise
performance, has significantly higher gains in average cross-country
speed during weak weather conditions in comparison with winglets B
and C, which lead to smaller gains during thermalling, but larger ones
during cruise. These differences, however, diminish with increasing
thermal-core strengths, although all three designs still have noticeable
advantages over the baseline.

Overall, results obtained are promising with respect to theimplemen-
tation of evolutionary algorithm optimizers for sailplanewinglet design.
It is important to note that these designs were found during simulations
that took less than 24 hours to complete on a conventional desktop com-
puter. Future work will be directed towards the performanceof the
computed designs compared to existing winglets as well as the addition
of other direct objectives such as the average cross-country speed.
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