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Abstract 
The paper summarizes the state of development of the Natural Parameter Method (NAPAM).  The NAPAM can 
be used, for example, to assess and analyze the seemingly random but basically deterministic load inputs on glid-
ers by atmospheric turbulence and ground unevenness, respectively, and for analysis and modeling of atmospheric 
flow fields.  The NAPAM is the chaotic upgrading of the stationary and ergodic stochastic process model.  The 
starting was based on the Kovásznay theorem.  The initial success encouraged the general adoption of chaotic 
methods and procedures.  The mode and depth of the analysis is limited by the character of the record, i.e. by the 
accuracy and frequency of sampling.  The particularities of the method are treated in definitions, preprocessing, 
statistical analysis, correlation calculus, frequency analysis and in rating of similarity. 

 
Nomenclature 

f            frequency    s-1 
f()         function of… 
g()        function of 
h           sampling interval 
n           wave number    m-1 

p( )       probability density function 
t            independent variable resp. time  
x           dependent (registered) variable 
x0         lower limit 
xm         upper limit 
A          constant 
C          constant 
Gx( )     one-sided power spectral density function 
             resp. amplitude spectrum 
Hyx( )   frequency response function 
L           integral scale    m 
Lt          time scale    s 
P( )       probability distribution function 
Rx( )     one-sided autocovariance function 
T           time base (length) of the analysed record 
V           vehicle speed    ms-1 
X( )       potential function 
α           exponent 
β           deviation parameter 
δh          neighbourhood number 
ε            phase angle 
ζ            spatial displacement   m 
λ           Taylor’s scale    m 
λt          Taylor’s time scale   s 
μ           mean value 
σx          standard deviation 
τ            time displacement   s 
ω           circular frequency   rad s-1 

Φ          scale of similarity 

Ψ          scale of difference/distortion 
 

Historical background and basic perceptions 
     Originally the system and methods of natural sciences were 
based on the presumed strictly deterministic character of the 
laws of nature.  Later on this ideal concept could not be upheld 
and (at first in thermodynamics) the stochastic methods as well 
as the calculus of probability were admitted1.  The theory of 
turbulence, too, followed this trend but research for more exact 
relations continues. 
     The mathematical tool for this research was found in the 
form of correlation functions.  Strictly speaking, the true ran-
dom data sequences are statistically independent, consequently 
their correlation functions are zero.  Strangely enough, the 
mathematicians did not object to this ambiguity and the tradi-
tional model of stationary and ergodic stochastic processes in-
cludes not only correlation functions but frequency analysis, as 
well. 
     Seemingly the turbulence theory chose the same way, how-
ever it did not give up the essence of determinism even in de-
tails.  Knowing the differential equation and the solutions 
seemed quite normal.  Introduction of the integral scale pa-
rameter L seemed to be a turbulence particularity at first.  
Then, some decades ago the Kovásznay theorem2 based on the 
interconnection 
     Rx(τ)τ=0 =             (1) 2

xσ

     Gx(ω)ω=0 = 22
xLσ

π
   resp.   Gx(f)f=0 =         (2) 

declared the scale parameter L to be a natural parameter 
equivalent to and complementary with the standard deviation 
σx  for all stationary and ergodic stochastic  processes. 

24 xLσ

     This perception opened the way for the adaptation of turbu-
lence concepts and methods to other lines, too.  Moreover, it 
caused the stochastic process model to be a chaotic one in real-
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ity.  We believe thirty years ago the model was used to analyze 
and model road/terrain unevenness data for off-road vehicles. 
The initial success encouraged further work in this line3,4. 
     At present, mathematics offers a wide choice of procedures 
for handling nonlinear differential equations with provinces of 
bifurcations.  Some lines, e.g. meteorology, used these effi-
ciently but our participation seemed to be limited to the 
boundary layer control because of limitations in funds and in 
time span for the identification and solution of the differential 
equations.  Against this, the development of chaotic record 
analysis methods seemed to offer numerous new possibilities 
for aeronautical research and design.   
     The general trend in flight vehicle dynamics and operating 
load record assessment seems to distinguish three classes of 
functions (movements, forms): deterministic, stochastic and 
chaotic ones (Fig. 1).  Due to the possibility of bifurcation the 
third one is supposed to be even less predictable than the sim-
ple random cases. 
     We do not share this understanding.  The first reason is that 
we never get the measured function x(t) directly.  We have 
only the record of the function.  More or less part of the true 
information is lost due to the original errors of the registration 
and due to the finite frequency of sampling.  Moreover, errors 
may also accumulate in the recording (Fig. 2).  Mode and pos-
sibility of the data analysis is limited by the character of the 
record.  As it will be shown later, the degree of record to func-
tion correlation is determined by the measurement errors and 
by the sampling interval h.  Therefore, the classification of the 
original data may be only a more or less reliable extrapolation. 
     Updating the traditional stochastic process model (Fig. 3), 
we regard the stationary chaotic record as a transient one be-
tween the deterministic and the true random states (Fig. 4). 
This situation is similar to the theory of relativity without the 
concept of a single static inertia coordinate system.  Giving up 
the concept of perfect data processing, we attempt to save the 
remaining part of the recorded function.  The percentage of 
randomness depends on the magnitude of the measurement er-
rors and on the sampling frequency.  
 

Definitions 
     Reliable and productive research needs correct and unambi-
guous basic definitions.  Before describing the characteristic 
features of the NAPAM concept and procedures, let us glance 
at our peculiar view of some of the basic definitions.  We do 
not believe the formal definitions to be complete as yet.  A 
clear physical sense, too, is aimed at as far as possible. 
 
Deterministic, stochastic, chaotic 
     A function (movement, form) is deterministic if the initial 
conditions determine every one of the following values of the 
function exactly.  Deterministic data can be represented by ex-
plicit mathematical relationships. 
     In the stationary and ergodic stochastic process model, a 
true random character of the measured data was presumed.  If 
this would be true, neither correlation nor frequency analysis 
would be possible.  In order to correct this, the attribute sto-

chastic is not used in our nomenclature.  Correlation-free data 
sets are said to be random or truly random. 
     In the following we refer to the stochastic process as a cha-
otic process.  It implies that the record of the measured func-
tion is neither exactly deterministic nor truly random. 
 
Stationarity 
     Stationarity is defined and checked individually on each of 
the function parameters by the traditional stochastic process 
model.  The requirement is the invariance of the parameter to 
the value of the initial time t1.  
     Joining with the theory of Wigner5, the generalization for-
mally not yet proven but obvious reads as follows.  An x(t) pe-
riodic or nonperiodic function (movement, form, etc.) is sta-
tionary if and only if it has an X(t) (scalar) potential function 
and the value of  this X(t) function is constant.  We expect a 
quadratic form of the potential function. 
     The so-called weakly stationary function (i.e. only the mean 
value and the standard deviation are constant) is instationary. 
 
Natural parameters     
     The standard deviation σx and the integral scale L (Taylor’s 
scale Lt), indicating the scales for the two dimensions, are 
named natural parameters of the recorded function.  The ana-
lytical formulae for the probability-, correlation- and spectral 
functions are composed with use of these parameters. 
 
Regular-instationarity 
     A nonstationary function x=f(t)  is regular-instationary if 
and only if the standard deviation is σx=g1(t) and/or L=g2(t), 
with respect to, Lt=g2(t) and the transformation 

σx→ ( )tg
x

1

σ
 and/or L → ( )tg

L

2
, respectively, Lt → ( )tg

L t

2
      (3) 

makes the  transformed  functions  stationary.  For example the 
road unevenness, stationary in space, gives a regular-
instationary input time function to the wheels of an accelerat-
ing or braking car with g1(t)=1 and g2(t)=V(t), see also Eqs. 
(20) and (23). 
 
Spectrum 
    The series ( ){ }m

iixG 0=ω   is the spectrum of the function x(t) 
if and only  if  for  0 ≤  t ≤  T  

      = x(t)         (4a) ( ) ( )∑ ε+ωω
=

m

i
iiix tG

0
cos

or 

      = x(t)        (4b) ( ) ( )∑ ε+ωω
=∞→

m

i
iiixm

tG
0

coslim

 
Similarity 
     Similarity is a well known concept in everyday life.  It is 
used in this interpretation in a scientific or technical sense too, 
but its traditional exact definition has a much narrower sense 
in geometry (similar triangles and other plane figures).  The 
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chaotic way of assessment needs a much broader and, never-
theless, exact and measurable interpretation of the concept. 
     The similarity problem is current in several trades.  Our 
treatise focuses on the geometric similarity; other cases may be 
traced back to it.  In the rating of geometric similarity we take 
the following fundamentals into consideration. 
     Comparing is possible only with the same sort of things 
(e.g. triangle with triangle, living standards with living stan-
dards, etc.). Generally two forms can be declared to be similar 
if the characteristic features are identical while the subordinate 
ones may be different if the similarity is, nevertheless, obvi-
ous, that is, clearly  demonstrable. 
     In this form the definition seems to be uncertain.  On an 
impartial scale one of the parties is regarded to be the norm 
while the other one or the other ones is/are ranked to it. 
     The similarity calculation procedure consists of the follow-
ing steps: 

1. selection of the subordinate parameters (e.g. size 
of the triangles and mean value of the  respective 
component directions in the central frame of ref-
erence); 

2. converting the subordinate parameters into the 
reference values; 

3. determination/calculation of the differences in the 
characteristic parameters; 

4. calculation of the scale of difference/distortion 
and of the similarity. 

     The scale of perfect similarity in the Euclidean sense shall 
be Φ=1 and the scale of zero difference/distortion reads Ψ=0. 
For the intermediate cases we declare 
 Φ2+Ψ2 = 1          (5a) 
     The scale of difference determined at first gives the similar-
ity readily 

 Φ =           (5b) ( ) 2/121 Ψ−
 

Preprocessing 
     The NAPAM system of data processing is a development of 
the time-honoured stochastic process model as used, for exam-
ple, by Bendat and Piersol6.  A sketch of the model is shown in 
Fig. 3.  Preparation of the record for analysis is the usual way 
except the following statements, with respect to, operations.      
     It is advisable to pre-estimate the character of the record be-
fore the processing.  In our opinion it is not the presumed char-
acter of the recorded processes but that of the records which 
shall determine the choice of the analysis process.  
 
Neighborhood figure and function 
     The neighborhood figure is a graphical tool to visualize the 
relations between the coherent pairs of values of the sampled 
record.  The pairs of values are coherent in the sense that there 
is a constant displacement of kh between the sampling points 
of them given as a multiple of the sampling interval 

( ){ } [ ]{ } km
ikiii

m
ii xxPihxx −

=+= →= 00 ,          (6) 

     The plot, as its name indicates, shows the relations between 
the neighboring points of the record when the displacement is 
only one sampling interval (k=1). 
     The neighborhood figure is suitable for the classification of 
the records, because its shape determined by the character of 
the record, varies between two extreme cases. 
     When the record comes from a continuous function, sam-
pled with extremely high frequency (h→0) and the measure-
ment error is practically zero, the graph approaches a straight 
line on the diagram. 
     If the continuous function is periodic or almost periodic, 
then, the increasing of the displacement k  moves away the 
points from the straight and forms a fine polygon containing 
loops (Fig. 5a). 
     Against this, if the record is a true random series, the points 
form a symmetric cloud irrespective of the displacement kh 
(Fig. 5c). 
     Between these extremes, in a real case, the points form a 
narrow band around the straight line (Fig. 5b).  The width of 
the band depends on the relation between the short term chang-
ing rate of the observed phenomenon and the sampling interval 
and on the magnitude of the measurement error.  Therefore, the 
figure also is suitable for the fast preliminary check on the 
sampling conditions.  The effect of increasing the sampling in-
terval is shown in Fig. 6.  Neighborhood figures of further 
types of records can be seen in Dóra7 Fig. 1. 
     The neighborhood number δh has been defined for the exact 
numerical characterization of the width of the cloud of points 
as the normalized RMS value of the differences of the sequen-
tial sampling readouts xi+1 and xi 

( )
2/11m

0i

2
i1i

x
h xx

m
11

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

σ
=δ ∑

−

=
+           (7) 

     The hδ  value of say  indicates a sufficiently fast 
sampling and negligible measurement error.  True random se-
quences give 

2.003.0 ÷

2h =δ  irrespective of the value of the sam-
pling interval. 
     The variation of the sampling interval gives the neighbor-
hood function (Fig. 7a-c) 

( ) ( )
2/1km

0i

2
iki

x
h xx

1km
11kh

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

+−σ
=δ ∑

−

=
+        (8) 

     The neighborhood function is periodic for periodic func-
tions (Fig. 7a), it is nonperiodic for almost periodic ones 
(Fig. 7b), while it is nearly constant for random number se-
quences (Fig. 7c).  When the record comes from a continuous 
function sampled with extremely high frequency (h→0) with-
out measurement error, the extrapolated value of the neighbor-
hood function at 0k =  is practically zero (Fig. 7a).  In real 
cases a significantly nonzero extrapolated value appears which 
is characteristic for the magnitude of the random measurement 
error (Fig. 7b). 
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Running mean 
     The theory of stochastic processes declares the mean value 
of the continuous function x=x(t) to be: 

 μ = ∫
=∞→

1

1 01t
)(1lim

t

t
dttx

t
         (9a) 

or in case of  sampling at equally spaced intervals: 

 μ = ∑
+ =∞→

m

i
im

x
m 01

1lim          (9b)  

     The NAPAM system follows the aero/hydro-dynamic con-
cept in analysing the mean flow and the seemingly random 
turbulence separately.  It gives not a constant μ but a running 
mean function μ(t) (Fig. 8 ).  In the following, we analyze only 
the seemingly random part, hence the mean values are left out 
from the formulae:  
 x(t) – μ(t)  → x(t) 
     For prospectively stationary records the calculation of the 
running mean shall be done before the neighborhood calcula-
tions.  

Statistical analysis 
     Calculation formulae follow the general stochastic trend ex-
cept the following. 
 
Standard deviation, probability distribution and density 
function 
     Having subtracted the mean value from the recorded sam-
ples, the formula for the standard deviation reads: 

σx = ( )
2/1

0

2

1

1

1

1lim ⎥
⎦

⎤
⎢
⎣

⎡
∫

∞→

t

t
dttx

t
resp. σx =

2/1

0

2

1
1

⎥⎦

⎤
⎢⎣

⎡
∑

+ =

m

i
ix

m
(10ab) 

     Standard stochastic methods are used for calculation of the 
probability functions as shown on Fig. 9. 
 
Analytical form of the probability function  
     Standard probability functions are used for the smoothing 
of the experimental data.  In some cases, the exponential dis-
tribution function or the normal probability density formula 

 p(x) = ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ
−πσ

−

2

21

2
exp2

x
x

x        (11 ) 

will serve well (Fig. 9).  The two-parameter Weibull function, 

 ( )xP−1
1 = 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β

α
xexp          (12) 

being in some respect a generalization of the Gauss function, 
can be adopted, too.  In all three of them, a lower boundary x0 
or an upper one xm can be introduced for the distribution. 

 
Correlation 

Autocovariance function 
     The statistical analysis of the records in the dimension of 
the independent variable uses the one-sided autocovariance 
function 

Rx(τ) = ( ) ( )∫ τ+
=∞→

T

tT
dttxtx

T 0

1lim       (13a) 

Rx(kh) = ∑
+−

−

=
+

km

i
kii xx

km 01
1       (13b) 

     For errorless records the relation reads 

 ( ) ( )khkhR hx
x

2
2 2

11
δ+

σ
 = 1       (14)  

     Therefore, introducing two non-standard notations, 
the local one  

Sk= ( ) ( )∑ ∑ −
+−

+
+−

−

=

−

=
++

km

i

km

i
ikikii xx

km
xx

km 0 0

2

12
1

1
1  

      (15) 
and the average one  

Sn = ∑
=

n

k
kS

n 1

1                                                        (16) 

gives the possibility to estimate the initial random measuring 
error (Fig. 10) 

Δr (ζ) = Δr(kh) = Sk - Sn         (17) 
  

Integral scale and Taylor’s scale 
     We adopted the scale parameters from turbulence theory. 
The integral scale reads (Fig. 11) 

 L = ( ) ( )∫ ςς
ς

ς ∞→

1

1 00
1lim dR

R x
x

     [m]        (18) 

In time coordinates it comes out 

 Lt = ( )∫ ττ
τ

∞→τ

1

1 0)0(
1lim dR

R x
x

     [s]        (19) 

     For a vehicle running over/through a stationary external 
load input, the transformation formula reads 

 Lt = 
V
L  [s]          (20) 

     The formula for Taylor’s scale reads 

 λ = 
( )

2/1

0
2

2

2

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ς

ς
−

=ςd
Rd x

     [m]        (21) 

     The calculation scheme is shown in Fig. 12.  In time coor-
dinate it is 

 λt = 
( )

2/1

0
2

2

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

τ

τ
−

=τd
Rd x

     [s]        (22) 

The transformation formula is the same 

 λt = 
V
λ       [s]          (23) 
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Frequency analysis 
Spectral density function 
     Spectral representation is mandatory for the analysis of tur-
bulence as well as for the dynamic load input-output calcula-
tions.  As it is well-known, the nonperiodic character of the so-
called stochastic functions necessitated the extension of the 
Fourier calculus methods in the form of the Fourier transfor-
mation done on the autocovariance function.  It results seem-
ingly in the form and dimensions of a continuous differential-
spectrum function Gx(ω) or Gx(f).  The autocovariance func-
tion does not include the phase angle ε.  For this reason the 
spectral density function only is an ensemble spectrum.  
     The NAPAM programs prefer the so-called direct method 
using directly the x(t) data record offered by the introduction 
of digital processing.  It gives substantial improvements espe-
cially in case of multiple input-output calculations. 
 
Direct spectrum 
     Direct spectrum methods are used but without fast-Fourier-
transform (FFT) modification.  The net result is a reliable de-
termination of the function Gx(f) or Gx(n) over the measured 
base length T (see e.g. Fig. 13) including the phase angle ε(f) 
or ε(n). 
     The generalized form of the Kármán turbulence spectrum is 
used for smoothing the measured spectrum amplitude points.  
It reads 

 Gx(n) = ( )
( )[ ]α+

+
σ

2

2
2

1

14
CLn

CLnAL x         (24) 

or 

 Gx(f) = 
( )

( )[ ]α+

+
σ

2

2

1

1
4

fCL

fCLA
L

t

t
xt         (25) 

In case of turbulence, the exponent reads α=11/6, resulting in 
the original Kármán formula.  Road/terrain unevenness spectra 
seem to give about α=2 for start and landing load calculation. 
     Exact point for point space-time conversion is also possible 
 
 fi = niV           (26) 

 Gxi(fi) = 
( )

V
nG ixi          (27) 

     The role and the place of Taylor’s scale seems uncertain at 
present in the evaluation.  Space and time bounds do not allow 
discussion of every detail of the calculation. 
 
Multiple input-output  
     Knowledge of the relative input phase angles εi-εj at t = ? is 
necessary for the multiple input-output calculations.  In the 
traditional form, the input relative phase information is in the 
input spectrum matrix 

  Gxx(f) =        (28) 
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

)()()(

)(...)()(
)(...)()(

21

22221

11211

fGfGfG

fGfGfG
fGfGfG

rrrr

r

r

K

MOMM

and the formula reads: 
 Gyy(f) =         (29)  )()()(* fHfGfH T

yxxxyx

     The direct spectrum calculation offers the possibility of 
phase angle evaluation, by giving a (complex) spectrum vector 
representation of the input forces.  It results in substantial sav-
ings in memory space as well as in CPU time. 
 
Discrete frequency amplitude spectrum 
     Field tests in Hungary confirmed the accuracy of input-
output calculations using the direct spectra of the terrain un-
evenness3.  Nevertheless, doubts arise about the theoretical 
correctness of the method.  As shown in Fig. 13, the raw PSD 
points have a significant dispersion.  The fact that it does not 
diminish with the development of instruments and data proc-
essing brought up the subject of a discrete frequency non-
continuous spectrum structure. 
     In order to get hold of the problem, respective trial calcula-
tions were made on four atmospheric turbulence records from 
the DLR research program LOTREX/HIBE’898.  The results 
were reported in 1996 at Budapest9 and in 1999 at the XVI 
OSTIV Congress10.  A theoretically not indisputable modifica-
tion of the Fourier process confirmed the existence of the dis-
crete frequencies (Fig. 14) but the numerical accuracy was in-
ferior to that of the PSD calculus.  Thereupon, another method 
was to be found. 
     It is easy to prove that no manner of Fourier integration 
type calculus can be correct if the ratios of the respective fre-
quencies are not integer.  To get around this difficulty, we de-
veloped a method based on the phase portrait 

 
dt
dx  = ( )( )txf           (30) 

   
    The simple geometric approximation      

 
1ttdt

dx
=
≈⎟

⎠

⎞
⎜
⎝

⎛
h

xx ii −+1    (t1 = 
2

1 ii tt ++ )       (31) 

could be an acceptable compromise for continuous and smooth 
functions but it is of no use because of the primary random 
measurement errors.  Reducing the intervals between the sam-
plings and introduction of a local running mean calculation 
solved this problem (see Fig. 15).  Now, we are working on a 
correct method to calculate the respective frequencies and am-
plitudes including the initial phase angles. 
 

Rating of geometric similarity 
     Similarity of forms or movements is a useful indicative of 
physical relations.  The human sense perceives and grades it 
instinctively, but the Euclidean geometry accepts and defines 
the forms with perfect, so to say the 100%, similarity only. 
Therefore, to circumvent this limitation, the numerical rating 
of the similarity was explored.  It promises new possibilities in 
research and development. 
     The work is in the initial stages.  Initial concepts and basic 
formulae have been reported 11, 12. 
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Concluding remarks 
     NAPAM is a record analysis method of chaotic character 
starting from the stationary and ergodic process model and 
from the Kovásznay theorem.  It gives considerable improve-
ments in accuracy as well as savings in CPU time and in mem-
ory space.  At present the frequency analysis and the rating of 
similarity stand in the center of the development work.  
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Figure 1 The usual classification scheme for records 
 

 
Figure 2 Loss of information in the analysis of records 
 

 
Figure 3 Scheme of the stochastic process in style of Bendat 
and Piersol3   
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Figure 4 The NAPAM classification scheme 

 

 
a Periodic 

 
b Chaotic 

 
c Random 

Figure 5 Characteristic neighborhood figures 
 

 
Figure 6 Neighborhood figures of a record relating to various 
sampling frequencies 

 
a Exact periodic 

 
b Chaotic 

 
c Random 

Figure 7 Characteristic neighborhood functions 
 

 
Figure 8 Calculation of the running mean 
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Figure 9 Calculation of the probability distribution and density 

 

 

 
Figure 10 Two estimation of the measuring error 
 

 
Figure 11 Calculation of the integral scale 

 

 
Figure 12 Calculation of Taylor’s scale 
 

 
Figure 13 Power spectral density function 
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Figure 14 Experimental discrete-frequency atmospheric turbu-
lence spectrum 

 

 

 
Figure 15 Calculation of the phase portrait 
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