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This paper describes a theory of glider cross-country
soaring. The greatest contribution on this subject is the
MacCready theory. But in modern soaring technique, many
glider pilots choose to set a slower speed than derived from
MacCready theory. That is to use a low Ring Setting. Fly-
ing at lower speed and higher L/D allows searching over
a wider range to select better thermals, and to improve
mean speed. Experience has shown that the selection of
thermals to use or ignore is as important as the selection
of inter thermal speed. In this paper, best speed to glide,
weakest thermals to use and optimum cloud chasing rules
are computed based on the meteorology of a given soar-
ing day and a pilot selected level of risk of landing-out.
The mathematics underlying the stochastic decisions are
shown. A strategy to get the best score at competitions is
presented.

NOMENCLATURE:

C  Rate of climb in given thermal

C;  Strength of a minimum useful thermal

Crar  Estimated maximum strength of thermals for this day
C  Mean strength of useful thermals

D:  Marking distance of the pilot in a competition

D, Task distance

h Present altitude
h»  Minimum altitude to make a safe landing
h, Altitude of leaving thermal
. Ak Height of short climb
L Average distance to hit next thermal

Lo Average distance to hit the next thermal producing
at least zero lift

L,  Distance that the glider can glide h to hm

n.  Risk parameter

pa  Probability of landing out at present glide

Pa Probability of landing out before completing the task

pa(D) Probability of landing out at distance D

P. Total score of competition

P, Expected total score of competition

P,  Distance points

P,  Speed points

r Average diameter of thermals

R;  L/D when gliding between thermals
Ria  Best L/D of the glider

V' Inter thermal speed

Vi Mean speed of the pilot in a competition

Vio  Speed forbest L/D

V,  Best speed in a competition day

V' Mean speed for the task

a  Proportion of thermals with clouds
] Angle of course deviation

p(c) Numerical density of thermals

*Strength, spacing and diameters of thermals are as-
sumed to have normal distribution.
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1INTRODUCTION

How can we speed up the cross country flight? The
first theoretical answer was given by Paul MacCready [1].
This great theory is basic to all task flying glider techniques.

The second contribution was by Helmut Reichmann [2].
He considered the finite distance of glide, and found that
the thermal strength is more dominant than inter thermal
speed for determining the mean speed of cross-country.
He mentioned stochastic thinking - the idea of applying
statistical theory in competition flying. He recommended
using slower inter thermal speeds than the MacCready ring,.

Mitsuru Marui enlarged on these studies [3]. He studied
many techniques of gliding: e.g. the dolphin, the speed
setting, the cloud chase and so on. He carefully evaluated
their effectiveness and distinguished between them with
a value rating (whether available or unavailable). His
helpful studies significantly contributed to the improved
performance of Japanese pilots.

In spite of these evolutions of soaring theory, some pilots
are still not using these new ideas. They sometimes persist
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Figure 1: Model of Cross-Country

in flying on course without chasing clouds, or they may
chase all clouds and wander in the sky, or they may fly too
fast between thermals and land out, or they may use all
thermals regardless of their strength and slow down the
cruising speed, or they may concentrate their attention on
the speed director while neglecting looking out, etc. The
purposes of this study are to help those unfortunate pilots
to realize their real ability, to help them in their decision
making and to contribute to the advance of the art of soar-
ing by answering these questions: “Should I use or should
I not use this thermal? How fast should I fly between
thermals? and which cloud should I go for?”

In this article, using mathematics and stochastic models
of the spatial and strength distribution of thermals, con-
crete values of these flight techniques are discussed based
on management of the risk of landing out.
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2 MODELLING OF CROSS-COUNTRY FLIGHT WITH

STOCHASTIC PROCESS

The model of glider cross-country flight developed here
starts with a glider flying with glide ratio R, and leaving a
thermal at altitude / (see Fig.l). The distance L, that the
glider can fly is R .(h— h..), here h,, is the minimum alti-
tude to make a safe circuit and land.

Next, a random spatial distribution of thermals is assumed
based on an arbitrary numerical density (Fig.2). Then, the
sky is partitioned into squares of boundary length r, an
assumed value representing the average size of thermals
(Fig.3). A fraction of the squares now contain thermals.
Assuming the density of thermals where the strength of
thermals is LARGER than C is p(c) (number/area), the
probability that a square contains a thermal is rp(c).

As the pilot flies along the course for a distance not
longer than L, the number of squares the glider passes

through is no greater than é;“ The probability p, that the
glider will NOT hit any thermal that the strength is

LARGER THAN Cis

Ly
Pa = (L =1%pc))™ M
This expression can be reduced to
.
Pot = € )
Here, L is defined as
o sy
- log(1 —r?p(c)) @)

L is the average distance to glide until hitting the next use-
ful thermal stronger than C. It corresponds to the average
thermal spacing. L increases with C. Here, it should be
remarked that p(c) is affected by not only weather condi-
tions but also on the skill of the pilot and the performance
of the glider. On an actual cross country, the probability of
hitting thermals can be increased by chasing clouds and
using horizontal dolphin. Skilled pilots can find strong
thermals and locate the centre, but a novice pilot will be
apt to lose a thermal or turn a 4m/sec thermal into 2m/sec
by poor centering.
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Figure 2: Numerical Density of Thermal

To keep the risk of landing out low, the glide length of
the glider L, should be larger than the thermal spacing L.
Here, the Risk Parameter », is introduced as

TI,-=_

L (4)
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The probability of being forced to land out without
finding any thermal, p, takes a value of e*". The Risk
Parameter nr is a function of the probability of landing
out. For successful soaring, it should be less than 1. For
example, the probability of landing out when leaving a
thermal is 37% at n, = 1, and 0.67% at n, = 0.2. So, this
parameter is proportional to the aggressiveness of the
pilot. If the pilot is aggressive, he discards weak thermals
to get high speed, the risk of landing out increases and the
Risk Parameter takes a large value. On the other hand, if
the pilot is conservative and uses almost all thermals,
including the weak ones to avoid landing out, then the
Risk Parameter takes a small value.

Cross-country soaring speed is improved by selecting
only strong thermals. A compromise using weak thermals
reduces the danger of landing out. Here, we need the value
of the minimum thermal strength to use while keeping the
risk of landing out to an arbitrary value of ¢! selected by
the pilot. Substituting L, = R.(h—h.,) and eq.(3) to (4), the
relation of the present altitude and the minimum thermal
strength C, is given from
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Figure 3: Model of Thermal distribution

following equation

e TR = 1 —r¥pc,) (5)

This equation can be simplified using the approximation
of the exponent function €* 2 14z, for small values of x
as :

1
n,rRy(h — hp) (6)

This equation will be used to obtain the strength of the
minimum useful thermal by solving for C,.

= P(cy)

3 MINIMUM STRENGTH OF THERMAL

To solve the minimum strength of the thermal C,, the
thermal distribution p(c) must be estimated. Here, a very
simple model is used. If we wanted to deal with it exactly,
we should refer to the study of meteorology. A prediction
of the thermal distribution p(c) in nature is beyond the
scope of this study. (See [6],[7],[8],[9] and [10].)

The assumptions used here are 1) Thermal strength has
normal distribution, 2) Truncated on the high end by an
arbitrary value of C,,., and 3) Thermal density p(c) (inverse
of thermal spacing) decreases uniformly with an increase
of thermal strength (C).
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Figure 4: Histogram of Thermal Strength

An example of function p(c) is given as

C
pc) = po(l — c

marxr

) @)

Substituting equation (7) into equation (6), the minimum
strength of the thermal C; can be obtained as a function of
the altitude h

: :
C = Cmur{l = m} (8)
Here, L, is defined as
1
Lo = — 9)
TPo

Ly is the average spacing of thermals producing at least
zero lift. This may be a few kms at a standard good cross
country condition.

The result of setting L, = 3km, h,, = 300m, Rg = 30, C,... =
4m/sec, and n, = 0.3,0.2 and then solving for the minimum
strength of the thermal C; is shown in Fig.5. (The reason
- for the values 0.3,0.2 of n, shown is mentioned in a latter
section.)

The pilot can make a decision according to this Figure.
For example, if the glider is flying at 900m AGL and met a
1.5m/sec thermal, the pilot can discard the thermal, if the
pilot was aggressive (n, = (.3), but the pilot should use the
thermal, if the pilot was conservative (n, = 0.2).
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Figure 5: Strength of Minimum Useful Thermal

4 INTER THERMAL SPEED SETTING

In conventional theory, the inter-thermal speed setting
was calculated from the MacCready ring. But in the mod-
ern view, slower speeds are recommended because they
allow enough altitude to select strong thermals and to keep
the risk of landing out low [3]. Many pilots agree that cross
country mean speed is more affected by thermal strength
than by inter thermal speed [2]. Serious performance pen-
alties are inflicted when the pilot is forced to use weak
thermals at low altitude due to having flown at high speed
with low L/D’s.

The mean speeds of cross country flight are shown on
Fig.(6). If the top of the climb is h, the mean altitude of
arrival at next useful thermal h, is given as

L(C)
R,
Here, L(C), is the mean length of glide until finding next

thermal of strength C or more, can be calculated from

equation (3) and using the approximation of the exponent
function |

L(C) ~ (11)
TP(C)

hy = h, — (10)
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Except as noted,
Top of climb hy = 2000m, Thermal spacing Lo = 3km, Mximum lift Cpyz = 4m/sec
Risk n, = 0.2, Best L/D = 37 at 95km/h, no air mass motion
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Now, Using a rough assumption that the mean strength
of thermals C coincide with the minimum strength C, at
the altitude of arrival altitude h;,, C can be obtain from
equation (8) by substituting h, to h as

_ Ty

C_Cma:r{l _ﬂng(hb—hm)} (12)
Using equation (10), (11) and (12), C can be found as

= s+ 1)L

b= Gt~ Y gy

n, Ry (hy — hy)

Next, the mean speed of cross country V'is given by the
inter thermal speed V and the mean strength of the
thermals C as

= V
7

= % (14)
1+ R,

(For more exact calculation, a stochastic procedure should
be used [4].) The glide ratio R, is given as a function of
speed V from the glider performance. For numerical analy-
sis, an adequate model of glider performance is given as

V2
g Rbest V[?D

Vip
Rbes! %

+ (15)

m‘m

Here, Ri... ts the best L/D of the glider, and Vipis the air
speed that the glider can get the best L/D.

For the performance of a glider having best L/D R, =
37 at Vip = 95kim/h, the calculated values of the mean speed
Vand the inter thermal speed V are shown on Fig.6, with
various conditions of the top of the climb k, (Fig.6.a), the
thermal spacing L, (Fig.6.b), and the maximum strength
Coux (Fig.6.c). According to this result, the best inter
thermal speed setting can be found. For example, in the
meteorologic condition of L, = 3km, C,,., = 4m/sec and the
thermal top , = 2000m, the best inter thermal speed is about
137km/h.

Note that a large setting of the Risk parameter n, has the
same effect as L, becoming small in equation(13). The mean
speed can be higher with aggressive flight, but the risk of
landing out will increase.

In Fig.6.d, the air speed for best L/D is 95km/h for all
gliders. The performance significantly contributes to the
mean speed.

Fig.6.e represents the effect of air mass vertical motion.
The optimum speeds appear to contradict the classical rule
of “dolphin” or “porpoising” in rising or falling air.
Apparently, this fact seems inconsistent with MacCready
theory. But, the deterioration of available thermal strength
with head wind or sink causes a shift of the best inter
thermal speed to slower speed, and cancels the shift of the
polar curve due to the head wind or sink.
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Figure 7: The Course Deviation

5 COURSE DEVIATION WITH CLOUD CHASE
Assume the glider flies under a “rule” that says to go to
the nearest cloud such that the angles of course deviation
are smaller than a maximum deviation angle &, (Fig. 7).
In contrast to flying straight ahead on course, the thermal
spacing L, changes to a smaller value Ly. From the defini-
tion of the spacing Ly, there should be one thermal in the
sector with the radius L, and the angle 26, Considering
the finite size of the thermals and the existence of blue
thermals, p, thand Lo should satisfy the following equation

pg(go_l:gz + Q’T‘_EU) = ] (16)

where aisa compensation for the existence of blue thermals
(¢ > 1). This equation can be solved for L.

’ 2T
LDZR—D(\/1+RL—‘1) a7) .
L
Here, AL
Ry = —= (18)
ar

The mean speed is improved by an equivalent shorten-
ing of the thermal spacing L;, and deteriorated by the
course deviation. In the case of course deviation by the
angle 6, the spacing will be lengthened by 1/cos#, then
the mean speed will be deteriorated by cos 6.

CGain of mean speed

Lp=5km
1.2 7 Lo=3km r =05km
r =0.5km
Lo=5km
r =1.2km
1.1 4
10
a=2.0 in all cases Lg=3km
= r =12km (18)
T T T T T T Bu
0° 10" 20 30° 40° 50° 60°

Figure 8: Ratio of Mean Speed Deviating to
Mean Speed on Course

Hence, the mean speed is replaced with a equivalent mean
speed Vas

‘._l/ = cos OV

(19)
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Assuming the clouds are distributed at random, the angles
of off-track 6 are distributed at random from —6, to 6.
Then, the mean value of speed deterioration cos@ is
calculated as

1
20,

sin 90

cosf =

fo
/ cos 0df = (20)

0

The best equivalent mean speed can be obtained substituting
Lo into (13) and multiplying cos @ the mean speed calcu-
lated by (14). Fig. 8 shows the numeric result of a speed
gain of cloud chase relative to no cloud chase. The best
maximum deviation angle exist between 20~30deg. and
becomes wider as the soaring condition become worse (see
the case of Ly= 5km). The performance improvement of
cloud chase is about 10%. Generally speaking, too much
deviation (exceeding 50deg~60deg) is useless.

Although this approach is completely different from
other studies, the result that the most profitable course
deviation angle lies between 20~30deg is very similar to
the results of Ref. [5], lending credence to this part of the study.
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Figure 9: Utilization of Weak Thermal

6 UTILIZATION OF WEAK THERMALS

If the glider meets a weak thermal, it is a good idea to
climb only a little bit [3].

Consider a case that the glider departs from a thermal,
then meets a weak thermal (strength ¢) at a point of dis-
tance L, and climb a short time f (Fig. 9). In this case, the
apparent glide ratio is improved, and the apparent glide
speed is retarded. The apparent glide ratio is changed as

, R,
o= T em a1
And the apparent glide speed is changed as
. |4
V= 22)
tV
Loy

Substituting (21)~(22) to V, R, to V, R,of (13),
(14), the mean speed is changed to

. v( NrLO!!g )
Ve R N.LoR v (23)
1+ Gegml¥ 4 A 4 Bepefa ¥ 2
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Here, ’
ra8— L (
and,
V R |4
A = 2IN. T, hi = b
-t L,{ 0 Cm( ¢ )} @5)
N,=1/n,+1 (26)
Ly = Ry(hy = hpm) — N Lo 27)

To get the maximum effect of the “short climb”, the value
of the climb height fc that provides the best value of the
mean speed V should be calculated. It can be given by a
differential of V by z. The value of z that the differential
equals zero is the solution. Hence,

d‘j' _ (28)
dz 0
This equation can be reduced to (29)
9L L? e(hy — hpn)?
2 | 1 _ t m — 0
N IoR,” T N2LoR,  CraiNZLy

Since the climb is sufficiently small, an approximation
z < 1 can be fair. So, the term z*can be neglected, and
the solution is derived as

te __  hi— h,, [ ¢ ¢ 5
L7 9N Ts V€ Cones P

Here, the equation (13) was used.

The interval of weak thermals L. can be estimated
with consideration of the average thermal spacing that is
weaker than C and stronger than c as

1 o LUC.mcz (31)
r(pe) —pe) C-c

Lic~c) =

Finally, the best climb height Ah = tc = zL() canbe
derived as

Cmaz hg - hm {44 é
A 3N, (é cm) #2)
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PMaximum lift | Thermal spacing | Minimum thermal strength
in the day for short climb
Craz(m/sec) Lo(kmn) ¢ (m/sec)
6 1 4.94
f 3 3.13
6 8 (.40
3 1 2.47
3 3 1.56
3 8 0.20

Except as noted,
Top of climb h; = 2000m, Risk n, = 0.2,
Best L/D = 37 at 95km/h, no air mass motion

Table 1: Minimum thermal strength for the short climb

Obviously, the value of _\ 1 is negative at the condition of

=2
too small of a value of € < C,(:m: - This shows that climb-
ing in a thermal weaker than this is useless. The minimum
value of the thermal worth utilizing is shown in Table 1.

Evaluating the performance advantage of using weak
thermals by substituting (30) into (23) is mathematically
awkward. A trial and error numerical computation pro-
duced the results cmown in Table 2. This shows the most
effective value of .\ h and improved mean speed V for
each value of c. The best g glide speeds are changed to V .
The condition was Ly = 3km, n, = 0.2, hy = 200001, C e = 41/
sec, My, = 300m. In this case the mean used thermal strength
C, is about 2.5m/sec. And a thermal weaker than 1.5m/sec is
useless. So, the proper value of minimum strength of avail-
able thermal for “short climb” might be about 2m/sec. The
profit of short climb is about 1%, and the best climb height
Lhis

Lift of short climb | Mean speed Best speed for Best height of
inter thermal glide short climb

c(m/sec) V(km/h) Vitide Ah(m)

1.5 90.16 136 0.0

1.7 90.23 138 10.4

1.8 90.48 140 24.6

2.0 91.34 144 55.8

2.2 92.55 147 90.7

2.5 94.78 152 151.2

3.0 98.07 154 231.6

Except as noted,

Top of climb h' = 2000, Thermal spacing Ly = 3km,
Maximum lift Cpyaz = 4mfsec Risk n, = 0.2,

Best L/D = 37 at 95km/h, no air mass motion

Table 2: Improvement of the mean speed by short climb
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some tens of metres, which might be equal to one or two
turns in the thermal.

The principle of utilization of weak thermals is to be able
to improve thermal selection by an apparent improvement
of the glide ratio. This result is consistent with the tech-
nique of top pilots. They say their barograph traces show
short climbs, probably the result of a few turns in weak
thermals (see [3]). They arrived at the best technique by
experimentation.

7 SCORES AT THE WORLD CUP COMPETITION
The calculation of score P. at the world cup champion-
ship is shown as

P.= F(P,+ Py) (33)

Here, F is the day factor (usually 1), P, is the speed point
and P, is the distance point.
The speed point P, is calculated as

2
P, = QPmRn(% — (34)

Here, P, is the day factor (usually 1000). V; is the
competitor’s speed and V,, is the best speed of the day. R,
is the ratio of the number of competitors exceeding 2/ 3 of
best speed and the number of competitors with a compe-
tition launch on the day.

The distance point Py is

D, 2
Pu= PnpH(1- 3R.) (35)

D; is the marking distance and D, is the length of the task.

Considering the possibility of landing out, the expected
value of the scores can be calculated. The probability of
landing out at distance D, is expressed as pa(D1). And
the probability of landing out during a contest day is ex-
pressed as the integral of all of the probabilities of landing
at all possible landing distances.

Dm
p_o:=j; Pot(D1)d Dy (36)

Then, the expected score Pc can be calculated as

_ Do (37)
B ={l—77)B,+ fo por(Dy)Py(D1)dD,

For the simplicity, the weather condition is regarded as
constant during the task. The probability of landing out
Pol and the speed V; are dominated by the Risk Param-
eter n,.
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What we want in this section is the best value of the
Risk Parameter », that gives best expected score P..

Regarding the risk of landing out is constant during the
task, pPa should be formed as

_D
Pa=1—¢ Do (38)

Here, Dy is a constant. p,(D)) can be derived from (36)
and (38)

3} 1 _DBi (39

Poi(D1) = “ﬁ*ﬁ&' =g T
m |p

m=D1 DD

Assuming the glider makes its start from the top of a
thermal Pa should satisfy an equation based on the defi-
nition of the Risk parameter

mle=Rg{hr-‘hm} —_— E"l,’ﬂ-r (40)

Then, the constant Dy can be decided from (39), (40)
_ —Rg(h: - h'm)
log(1 — e~1/nr)

Dy (41)

Since e~1/™r is usually small, this formula can be reduced
using the approximation log (1 + ) ~ =

Do =~ Ry(he — h)et™ (@2

D; can be considered as an average attained distance with-
out landing out.
Expanding (37) with (33)~(42), we can obtain the expected

score as (43)
) vV, 2 1 2
P =Pm[2R 2L et g o1 - SR =
c "\( Vm 3) s ( 3 n)( )
Here,
s = D (44)
= T
B _300km task, good condition
1000 ° " _-500km task, good condition
] 58~ __-300km task, weak condition
550 _-500km task, weak condition
Lo = 3km for good condition
600 Lg = 5km for weak condition
400 4
200 A
conservative -— —» aggressive
0 T T T T T T T T 1 ]’k-

01 02 03 04 05 06 07 08 08 1

Figure 10: Expected Score and The Risk Parameter

Fig. 10 shows the result of the expected score P, and the
Risk Parameter n, for each task distances, in the case of

TECHNICAL SOARING

R, =07, V, = 90km/h and substituting the best mean speed
obtained by Fig. 6 to V;in (43). The best value of the Risk
Parameter n, becomes smaller as the task distance becomes
longer, and as the soaring condition gets worse. It appears
from this study that the best value of the Risk Parameter is
around 0.25.

8 CONCLUSION
The big Factors of cross-country soaring

1. Minimum strength of thermal to use,

2. Speed setting of inter thermal glide,

3. Acceptable course deviation,

4. Utilization of weak thermals,

5. Setting of the risk, were solved using stochastic process.
Some results of this study are different from past theory,
e.g., the best inter thermal speed is hardly affected by wind
and sink. It is a good idea to “install” this theory in the
“glide computer” to build a smart soaring aid.

It should be pointed out that the skill of the pilot is included
in this theory since, by judicious course deviation and good
centering he can affect the density and strength of thermals,
the most important factor of cross-country soaring (the
“compensation” for the pilot skill in the glide computer is
feasible by introducing adequate parameter representing
the skill).

Matters for further study include, meteorology, thermal
spatial distribution in the sky and means of predicting thermal
strength and distribution.
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