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ABSTRACT

The author extends his numerical method for obtaining
the lift coefficient of wing sections which babes on a ran-
dom walk algorithm. In the former paper [2] the phenom-
enon of migrating fluid fronts in filter paper around mac-
roscopic obstacles lead to a numerical model of unsteady
potential flow the author calls “random walk source
model.” The shape of the migrating fluid fronts simulated
in the random walk model tells the history of the path of
fluid particles on their way them to the front; it thus car-
ries the information about the lift coefficient of the passed
wing section. He now studies the path of the center of grav-
ity of the “cloud” of migrating simulated fluid particles
around Joukowsky profiles whose lift coefficient is known,
and compares the theoretical lift coefficient with the nu-
merically determined value of path deflection of the cen-
ter of gravity, resulting from the random walk experiment.
The theoretical discussion of the path deflection leads to a
formula which predicts the maximum of possible Cf one
can obtain with circulation around wing sections in ideal
fluids.

1 INTRODUCTION

This paper deals with the analogy between fluid fronts
migrating in filter paper and the hydrodynamic behavior
of inviscid fluids [1], and the numerical fluid flow model
of unsteady creeping flow, which allows to determine the
lift coefficient of wing sections [2] . The “particles” in this
“ Random Walk Source Model” do not interact with each
other as opposed to the cellular automaton methods, but
local rules are set in such a way that the front of migrating
“particles” carries the history of the average “particle” on
its way to its place in the lattice. We will examine the cen-
ter of gravity of a “particle cloud” on its path around a
wing section.

2 THE RANDOM WALK SOURCE MODEL

2.1 Migration of fluid fronts in filter paper

When cutting the contour of a wing section from a sheet
of filter paper, as is used in paper chromatography, and
placing the leading edge of the paper into a liquid (e.g.
water, Fig. 1) the liquid fronts are migrating through the
paper. These fronts are separated at the wing section into
a left and a right front. A cut in the paper (separation line)
keeps the fronts separated after passing the wing section.
The difference in migration length d, measured at the sepa-
ration line, is proportional to the lift coefficient C;of the
wing section in potential flow [1]. F, =C;-5-u% - A, F,
lift force, p mass density, ux velocity, A wing area.
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2.2 Two approaches will show that the difference in the
migration of fluid fronts in filter paper around wing sec-
tions yields the lift coefficient [2]

It is possible to substitute the flow field (velocity ux in
infinity) around a wing section of the length T, with circu-
lation I'by a central vortex which has the same circulation
I" as the wing itself [3].

This vortex induces the velocity w(r) at the position
of the trailing edge: !

where 4 is the migration difference of the fluid fronts in
the direction of the separation line (Fig. I)
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Second approach:

Following a particle passing the wing section close to the
wall, the path length of the average fluid particle around
the left side is called s,. The length of the path of the
average fluid particle passing the right side is called s, .
Without circulation 8, = 84 . The time to pass the wing
sectionis t = -

In order to perform the Joukowsky rule we need to know
the velocity |u| at the edge of the wing section. This means
that the fluid fronts have to reach the leading edge of the
profile at the same time.
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2.3 Random Walk Source Model in analogy to potential
flow

According to Darcy’s law for fluid flow in porous me-
dia [4], the volume flux g per cross section is proportional
to the negative of the mechanical potential gradient, of
which only the pressure gradient Vp is relevant in thin
paper sheets, and is inversely proportional to the liquid’s
viscosity 7. The proportionality constant is the perme-
ability of the material to the liquid, k.

k
g=—\{-]Vp
n

Continuum equations with pressure p(z, 3, T3) leads to

sz &p 8%
ap= + Er:: + 3 o3 =0
analogous to
’e  8'® 0%
= —_— e U
AP 97 o 82 £ 822

where @ is the potential of the velocity vector field.

We introduce point sources at the leading edge of the
paper in order to convert the migration of fluid fronts in
filter paper, as shown in Fig. 1, into a model.

The distribution of the velocity in a source results from
the displacement of particles coming out of the center. The
following algorithm, which the author calls “Random Walk
Source Model,” is obtained by converting a source into a
random walk model, without observing the detailed path
of the particles that have left the center.

2.4 Description

A two-dimensional orthogonal lattice modeling fluid
flow in the presence of obstacles, consists of cells a,; .
Each cell can have three different values:

® a,; = l:this cell has one particle,
® a,; =0:this cell has no particle,

® g, ; =2:this cell cannot change its value: it cannot take
a particle.

In the beginning, none of the cells have a particle. At the
first time step, one cell acquires the value “1” (singularity
of the source). This means that one particle has left the
center of the source. At the second time step, the algorithm
tests the value of one of the four neighboring cells in or-
thogonal direction selected at random. Three results are
possible:

*Result 1: cell has the value “0.” The algorithm changes
the value to “1.” This means that this cell now has a par-
ticle. The next particle starts in the singularity of the source
at the next time step.
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*Result 2: cell has the value “1,” a particle is already
present, test another randomly selected cell in orthogonal
direction until you find a cell with the value “0.” Proceed
to result 1.

*Result 3: cell has the value “2,” the tested cell cannot
take a particle, test one of the three other possible neigh-
boring cells and select one of them at random. Proceed to
result 2.

This behavior can be viewed as the behavior of a fluid
particle, starting from one source, and making a random
walk to the region boundary. This boundary is formed by
all particles that have previously left the source. The par-
ticle randomly touches the obstacles in the flow region,
and settles down in the first free space near the boundary.
The boundary is viewed as an equipotential line of un-
steady potential fluid flow. Figs. 2 to 4 show the evolution
of a “particle cloud” generated in the random walk source
model.

3 NUMERICAL EXPERIMENTS REGARDING THE
CENTER OF GRAVITY OF “PARTICLE CLOUDS” IN
THE RANDOM WALK SOURCE MODEL

The approach to this problem is to simulate parallel flow
with point sources. This is done by situating these sources
on a line, which stands perpendicular to the flow direc-
tion, in front of the wing section (Fig. 5). Each particle
comes out of one of several sources, the center of which is
selected at random on the “source line.” The boundary cells
with the value “2” define the contour of the examined wing
sections. The separation line at the trailing edge also con-
sists of cells with the value “2,” in order to keep the fronts
separated (according to the Joukowsky rule). While the
“particle cloud” (all cells having a value of “1” ) is creep-
ing into the direction of the wing section, the center of grav-
ity of the “particle cloud” is plotted.

3.1 Expected deflection of the center of gravity of a “par-
ticle cloud” passing a wing section in the Random Walk
Source Model

3.2 First approach, blade rows (Fig. 6)

T = (Uge — tUsa) - t
?le=m
Fy=p- Up -T-b
e =sinf
L —sinfj
F=-7. sinf-t
Fp=Ca- 2 |ul*-b-T
Fo=p Ue-(—u.) sinf-t
Ci=L-|Tef - b-T=p- | -sing-t
Ci=2-%sinp
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3.3 Second approach, single blade (Fig. 7).

F=2-p-b-t-|?m|2-sin§
F,=2-p-b-t- |u.m| sm— cos*‘2
Fy=0C- |um|
2.p-b-t-|uzl sinf.cos =02 |W |- A
C;:cl-%'f-smg-cosg
sin 3 cos§=§~sinﬁ
C;—Z-%’—smﬁ
-4
Ci=2-1-sinf

3.4 Third approach, volume flux close to the blade
(Fig- 8)
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.lﬁ"rf_t = sin 3, V=t-b- |7 .|

C = ,‘,i - sin 8
3.5 Cyand von Karman vortex street

The unknown parameter in the formula concerning C,
is t.

Supposition: view the wing section blade row as a gen-
erator of a von Karman vortex street by starting and stop-
ping the blade row once. (Fig. 9):

chl

=T = sin , where
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Supposition ,{ = 0,281 = ?,

C = 0231 - sin 3

This formula leads to a maximum possible C;if sin =1
Ci(ein g=1) = a—g’:—; sin § = 20.163...

4 COMPARISION OF THEORETICAL APPROACH
TO EXPERIMENTAL DATA IN THE RANDOM
WALK SOURCE MODEL

Figs. 10 to 15 show the expected deflection of the path
of the center of gravity from a “particle cloud” as it creeps
around a wing section in the Random Walk Source Model
(theoretically determined gradient shown as line with
angle £3), compared to the experimental results. The path
of the center of gravity is shown as dotted line.

4.1 Discussion

The author has used a random walk algorithm for fluid
flow in unsteady potential flow by analyzing creeping flow
in porous media. The model differs from other cellular
automaton methods [6] because particles do not collide
with each other, but local rules are set in such a way, that
the front of migrating particles carries the history of an
average particle on its way in the lattice. Simulating a fluid
flow around wing sections while plotting the center of
gravity of the “ particle cloud” and the theoretical discus-
sion of this model leads to the formula C; = 0_2%1 by using
a blade row as generator for a von Karman vortex street,
which implies the result, that the maximum theoretical C;

generated by circulation is _C,(,mﬂﬂ) = %’-’mfg« - sin B =
20,163 : . ..
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Figure 4
Fig. 1: Migration of fluid fronts in filter paper, the difference . o ., ‘
in migration length d of left and right front is proportional to Figs. 2 to 4: Growing “particle cloud” generated using the
the lift coefficient of the wing section [1]. random walk source model creeping around a wing section cen-

ter of gravity of the “cloud” is plotted as path during creeping.
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Figure 2

Fig. 5: Simulated fluid flow around an obstacle, showing that
| each cell can have three values:

. ].rr

cell has one particle,
* “0” this cell has no particle,
» “2"” this cell cannot take a particle and cannot become
occupied.

Figure 3
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Fig. 6: Applying the equation of momentum for ideal fluids in
blade rows leads to

C;=%-sin8

g
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Fig. 7: Applying the equation of momentum for ideal fluids
free surface jet around a wing section leads to Cy = 2—,1.5 -sin 3

Fig. 8: Applying the volume flux close to a wing section leads to

o B, e
Cr= % -sinp
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Fig. 9: Blade row start and stop flow generates von Karman
vortex street.

separation line

Start line of “"particle cloud”

Fig. 10: Center of gravity of a “particle cloud” generated in
the random walLk source model, creeping around a wing section,
Wing section is result of a conformal plot (Joukowsky plot[5]).
Center of conformal plotted circle x, = 0, y, = 15, angle of at-
tack a = 40",

Proposed definition: C; = 20.163... - sin 8. Obtained
by comparing the expected gradient of the deflected path
of the center of gravity of the “particle cloud” when the
slower front has reached the trailing edge of the wing sec-
tion shown as line, to the experimental result of path plot-
ting shown as dotted line.
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Fig. 11: Center of gravity of a “particle cloud” generated in
the random walk source model, creeping around a wing section
is the result of a conformal plot (Joukowsky plot). Center of con-
formal plotted circle: o = 0,y0 = 0,a = 10, angle of attack
a=10°

Proposed definition: C; = 20.163...- sin B. Obtained
by comparing the expected gradient of the deflected path
of the center of gravity of the “particle cloud” when the
slower front has reached the trailing edge of the wing sec-
tion shown as line, to the experimental result of path plot-
ting shown as dotted line.
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Fig. 12: Center of gravity of a “particle cloud” generated in
the random walk source model, creeping around a wing section.
Wing section is result of a conformal plot (Joukowsky plot).
Center of conformal plotted circle
Ip = —2,7 = 5,a = 10, angle of attack a = 20°.

Proposed definition: C; = 20.163...- sin B. Obtained by
comparing the expected gradient of the deflected path of
the center of gravity of the “particle cloud” when the slower
front has reached the trailing edge of the wing section
shown as line, to the experimental result of path plotting
shown as dotted line.
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Fig. 13: Center of gravity of a “particle cloud” generated in
the random walk source model, creeping around a wing section.
Wing section is result of a conformal plot (Joukowsky plot)
Center of conformal plotted circle
zo = —1,y0 = 2,a = 15, angle of attack a = 45°.

Proposed definition: Cf = 20.163... sin B. Obtained by
comparing the expected gradient of the deflected path of
the center of gravity of the “particle cloud” when the slower
front has reached the trailing edge of the wing section
shown as line, to the experimental result of path plotting
shown as dotted line.
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