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ABSTRACT

Dynamic soaring is a flight method for extracting energy
from horizontal wind the strength of which varies with alti-
tude and which is termed shear wind. Behind ridges, sig-
nificant shear wind conditions can exist so that dynamic
soaring is possible. An optimal control technique is used for
determining dynamic soaring trajectories at ridges for max-
imizing the energy transfer from the moving air to the
sailplane. Particular emphasis is placed on achieving results
for the required shear wind strength.

INTRODUCTION

Dynamic soaring is a flight method with the use of which
a sailplane extracts energy from horizontally moving air.
This method differs from well-known soaring techniques
like thermaling and hang gliding where upwards moving
air is used for feeding energy to the sailplane. For continu-
ous dynamic soaring, it is necessary that the horizontally
moving air is not constant but changes with altitude. This
type of wind is called shear wind or shear tlow.

The possibility of utilizing shear wind for soaring flight
has been considered for quite a time, Refs. 1-15.
Investigations based on energy estimates and numerical
simulations provided valuable information about the wind
strength necessary for dynamic soaring. Further, modern
optimization techniques have been applied to the dynamic
soaring problem, Refs. 16-19. Thus, precise results have
been obtained for the minimum shear wind strength
required for dynamic soaring and for the increase of the
energy state of a sailplane when stronger shear wind con-
ditions exist.

In mountainous regions, shear winds are possible at
ridges. A wind coming over the top of a ridge produces a
shear wind condition behind the ridge where a separation
boundary between the wind area and a zone of still air
exists. Such shear winds are used by model gliders for
dynamic soaring, Ref. 20.

It is the purpose of this paper to determine optimal
dynamic soaring trajectories at ridges for full-size
sailplanes, with the goal of maximizing the energy transfer
from the moving air to the vehicle. Related performance
and control issues are considered. In particular, it will be
shown which shear wind strength is required for dynamic
soaring.

BASIC CONSIDERATIONS

Basically, an optimal dynamic soaring trajectory for max-
imum energy extraction from the moving air has a form as
shown in Figure 1. Starting from point 1, the sailplane per-

forms a turn and then a climb against the wind. In the
upper part of the trajectory, it turns into the wind and
descends until it reaches a similar altitude level as before
where it again starts a dynamic soaring maneuver like the
one described. There may be a shear wind condition such
that there is the same energy state of the sailplane at point 2
as compared with point 1 (same values for altitude and for
inertial speed, respectively). This case represents an energy-
neutral trajectory, meaning that dynamic soaring can be
performed continuously without increasing or decreasing
the energy state of the aircraft when reaching the end of a
cycle as denoted by point 2. For treating energy-neutral
dynamic soaring, it is sufficient to consider a single cycle as
defined by the section between points 1 and 2 in Figure 1. A
cycle which may be considered a basic element of an opti-
mal dynamic soaring trajectory shows periodic properties
as regards speed and altitude when comparing the final
conditions at point 2 with the initial conditions at point 1.

The described form of optimal dynamic soaring trajecto-
ries may be classified as a bend type path. As an alternative,
there can be spiral type trajectories, Figure 2. It can be
shown (Ref. 16) that they are inferior to the bend type tra-
jectories or equal at best with regard to the energy extrac-
tion from the moving air. The present paper will focus on
the spiral type trajectories. This is because they may best fit
to the limited spatial extent of the shear wind region at
ridges in the lateral direction. Further, the spiral type trajec-
tories are considered to be of a closed form, i.e., the begin-
ning (point 1) and end (point 2) of a cycle coincide. This
special spiral form may be termed an oval type trajectory.
The oval characteristic is again considered to be adequate
for the limited spatial shear wind extent.

The shear wind condition at a ridge is schematically illus-
trated in Figure 3. The wind is coming toward the hill from
the left, with the angles of the arrows indicating the
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Fig. 1 Optimal dynamic soaring trajectory of bend type
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direction of the wind. There is a boundary layer between
the ridge surface and the free flow. The steep drop of the
slope hill causes the wind together with the boundary layer
to separate from the hill, resulting in a wind shear zone
between areas of wind and of still air. This wind shear zone
offers the possibility for dynamic soaring.

The thickness of the boundary layer increases and the
shear wind gradient decreases with the distance from the
ridge. Accordingly, dynamic soaring is most efficiently pos-
sible in a region close to the ridge. It is assumed that the
shear wind characteristics do not change much for small
distances from the ridge, in a region where dynamic soaring
can be performed. The shear wind characteristics in a
boundary layer, as illustrated in Figure 4 may be modeled

Fig. 2 Optimal dynamic soaring trajectory of spiral type
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Fig. 3 Shear wind condition at ridge
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Fig. 5 Geodetic coordinate system and speed vectors for flight
in horizontal shear wind

The quantities V. and h,r denote reference values

which can be used for indicating the strength of the wind
shear. This means that Vo ref provides a measure for the
shear wind strength, evaluated at an altitude of t = h, + I1,,¢
In this paper, a reference value of /1, = 10m is applied. The

exponent m in Eq. (1) relates to terrain surface properties
which exert an effect on the shear wind characteristics. For
a terrain surface with trees and woods the exponent can be
set to m = 0.2 (Ref. 21).

The optimal control problem can now be formulated as to
determine the minimum shear wind strength required for
an energy-neutral trajectory. Accordingly, the following per-
formance criterion may be introduced, using the reference
value V7, ref S @ Measure for the shear wind strength:

1{ = Vu_:tn:f (2)

It is then necessary to determine the minimum of | for a
cycle as described above, with the cycle time f,. introduced
as the time interval between points 1 and 2 according to
Figure 2.

Vehicle Dynamics and Optimal Control
Problem Formulation

Sailplane dynamics are described using a point mass
model with reference to an earth fixed coordinate system.
The moving air is appropriately accounted for. Figure 5
shows the earth fixed reference system, with the x, axis
selected parallel to the wind, and the speed vectors describ-
ing the moving air and the motion of the sailplane. The
equations of motion may be written as:
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The aerodynamic forces are drag and lift which read:

L=C,(p/2)VS
D=C,(p/2)V$ ©)

Drag characteristics can be modeled as:
CD= CDO + KCEL (6)

where the lift coefficient C; is a control which is determined
by optimality computations.

The aerodynamic forces are dependent on the airspeed
vector V, while the motion of the sailplane with regard to
the earth is described by the inertial speed vector Vg =

(I‘kgkagf“’kg)r- They are related to each other by the follow-
ing expression (Figure 5):

V=V,-V,
With the use of V_, = (V

w

(7a)
O,O)T, Eq. (7) may be rewritten as

w

V = (1t + Vi 2 Wig) T (7b)
where
V=, +V,) +v., +w;
Ke Thw Kg Kg (7c)

Two of the angles of the aerodynamic coordinate system
used in Egs. (3) and (4) are determined by:

. ng
siny, =——=
vV
v 8
tany, = ©)
qu + I/W

The remaining angle, na, which describes banking of the
lift vector is a control. It is determined by optimality com-
putations.

For oval type cycle of an energy-neutral trajectory, the fol-
lowing boundary conditions hold:

ukg(O) = kg (feye)r Vg (0) = Vg (), Wpg (0)= Wiy (tfyc), (9)
h(0) = h“f_t;c)r Xe 0)= Yo “L‘yf} =0, Ye )= yg(fcyc) =0

For wy,, the countary condition can be chosen as wy, = 0
since there is a point of the trajectory where this value
holds. This implies that beginning and end of a cycle (points
1 and 2 in Figure 2) are correspondingly selected, yielding

the smallest /i values with h(0) = h(t.,.).

The controls are subject to the following inequality con-
straints:

CLmiu SCLécLumx
-90deg<p,<90deg

(10)

The optimal control problem can now be formulated as to
determine the controls, the initial conditions V;(0) = (11,(0),

Vieg(0)0g(0)T and H(0) and the optimal cycle time f.,
which minimize the performance criterion | = V,, ,.csubject

to the dynamic system Eq. (3), the boundary conditions Eq.
(9) and the controls inequality constraints Eq. (10):

u(t) = (Ca(t)ma(t)T (11)
is approximated by a parameter vector p. With reference to
a subdivision of the time period:

0 = b<ty<i.<tyg<ty=ty, (12)

the following relation is applied:

ESISE

u_(fzuj (,U,f),. iStstiyg (13)

The function U} is an estimation of the control for interval
j, with j=1,...,m-1.

The controls were determined using linear functions. For
given initial conditions, the equations of motion, Eq. (3) can
be integrated using the estimated control values. Thus, an
evaluation with regard to the performance criterion and the
boundary conditions is possible. This results in a non-linear
problem where the performance criterin:

/= Vw,rq)" (P) (14)
is to be minimized and the boundary conditions have to be
met:

b(p,bey)=0

. (15)
For solving the described optimal control problem, efficient
numerical optimization methods and computational tech-
niques are required which are capable of coping with com-
plex functional relationships including various kinds of
constraints. The numerical investigation was performed
using the parameterization optimization technique ALTOS
of Ref. 22 with the graphical environment GESOP of Ref. 23.

Results for Optimal Energy-Neutral Trajectories

Results for an optimized oval energy-neutral trajectory
of dynamic soaring at a ridge are shown in Figures 6-9 for a
sailplane with a maximum lift-to-drag ratio of (L/D),;,; =

45 and a wing loading of 11/S=50kg/m?, applying
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o,i\oﬁ‘ quadratic drag polar characteristics according to Eq. (6).
y The altitude of the ridge is assumed to be 200 m. From the

QI optimization computations it follows as a main result that

A:iiumf;e a shear wind strength of Vy, ¢ = 2.44 m/s at h,r = 10m is

required for continuously performing dynamic soaring. The
cycle time amounts to . = 17.76 s. Figure 6 provides a per-

cye
spective view on the trajectory, showing the motion in the
three coordinates.

Figure 7 presents the history of state variables providing
more quantitative information of the motion. Airspeed is
larger than inertial speed during the first part of a cycle
because the sailplane moves in a direction against the wind.
The opposite holds for the second part. As an important

200 result for the practical utilization of the optimal dynamic
x, [m] soaring trajectory, the maximum of the airspeed stays well
below possible limits for sailplanes which are in the order of
P 90 m/s.
y, [m] 80 The altitude time history is also presented in Figure 7

showing that the altitude range of the optimal dynamic
soaring cycle is about 85 m. The upper turn from a direction
against the wind into the wind is performed at an altitude
Fig. 6 Optimal oval-type dynamic soaring trajectory for sailplane with ther? the wind speed is con‘fpar.atlvely 1'.11gh. LA Ehirgss
(L/D),.. = 45 and m/S = 50 kg/m? (h referenced to bottom of ridge)  teristic of the upper turn which is most important for the
energy transfer from the moving air to the sailplane indi-
cates that the wind speed is fully utilized for achieving an
energy gain.
In figure 8, the behavior of the optimal controls is illus-
trated. The lifting capability of the sailplane is used to a
large extent. This particularly holds for the turn into the
wind at the upper part of the trajectory where the lift coef-
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Fig. 7 Speeds and altitude of oval-type dynamic soaring trajectory . . . i ; ;s ;
for sailplane with (L/D),.. =45 and m/S = 50 kg/m? Fig. 8 Lift coefficient and bank angle of oval-type dynamic soaring trajectory
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ficient C; takes on large values. Here, even the maximum
lift coefficient constraint, Cy,,,, becomes active. For the

turn into a direction against the wind at the lower part of
the trajectory, the lift coefficient is reduced. It may be of
interest to compare the behavior of the lift coefficient and
the airspeed which are, to a certain degree, complementary
to each other in order to produce the optimal lift behavior.
Bank angle control p which is also illustrated in Figure 8 is
applied without reaching its limits. It takes on its largest
values during the turn against the wind, in the lower part
of the trajectory.

An important issue concerns the load on pilot and vehi-
cle, which can be described by the load factor. This is illus-
tration in Figure 9 which presents the load factor time his-
tory. It shows that the load factor does not reach extreme
values. Most significant for the practical utilization, the load

Load Factor n

0 4 8 12 t[s] 16

Fig. 9 Load factor of oval-type dynamic soaring trajectory
for sailplane with (L/D),,, =45 and m/S = 50 kg/m’

factor maximum stays well below acceptable limits which
are in the order of n=4.5.

An evaluation of systematic optimization computations is
presented in Figure 10 which shows the minimum shear
wind required for optimum energy-neutral trajectories in
relation to the maximum lift-drag ratio of sailplanes, apply-
ing quadratic drag polar characteristics according to Eq. (6)

and a wing loading of rrr/SzSOkg/mz. The presented data
cover a wide range of maximum lift-to-drag ratios of
sailplanes. As a main result, the required shear wind
strength V7, .o is at a moderate level which can be consid-
ered as realistic and which is often exceeded in existing
shear wind situations at ridges. This result holds for the
entire range of maximum lift-to-drag ratios, including
sailplanes of lower aerodynamic performance.

In Figure 10, the results for exxisting sailplanes are also
presented. The models for their aerodynamic characteristics
are more complex when compared with the quadratic drag
polar applied in Eq. (6). They account for higher order terms
and for non-symmetrical drag characteristics. The results

(o3} [e=]

=

Required Shear Wind V,, [m/s]

[p]

30 40 50 60
Maximum Lift-to-Drag Ratio (L/D),,,.

ND
o

Fig. 10 Required shear wind strength V,, related to h,, for optimal
dynamic soaring (oval type trajectory, m/S = 50 kg/m®)

Sailplane 1 similar to Ka 6E (m/S = 23.0 kg/m’®), Club Class
Sailplane 2 similar to LS 7 (m/S = 49.7 kg/m®), Standard Class
Sailplane 3 similar to ASW 22 (m/S = 46 kg/m®), Open Class

presented in Figure 10 show that the values for these
sailplanes which may be regarded as representative for dif-
ferent sailplane classes are in agreement with the result
obtained for the quadratic drag polar modeling.

CONCLUSIONS

Dynamic soaring which is a flight method for extracting
energy from horizontally moving air is considered for wind
regions behind ridges where significant shear flow condi-
tions can exist.

An optimal control technique is used for determining
energy-neutral dynamic soaring trajectories such that
dynamic soaring is continuously possible. An evaluation is
presented for the required shear wind strength depending
on the maximum lift-to-drag ratio of sailplanes. As a main
result, the required shear wind strength is at a level which
can be considered as existent in realistic shear wind situa-
tions. Furthermore, the maximum values of airspeed and
load factor of dynamic soaring trajectories stay well below
limits acceptable for sailplanes.
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