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Abstract 
The paper presents the results of work aimed at the investigation of the load spectra.  The investigated object 

was a PW-5 glider equipped with a wing-spar root deflection measurement and accelerometer.  The records of 

the loads were made during several flight-tasks: thermal flying, soaring, wave-flying and aerobatics.  The 

results of the investigation are presented as load spectra in the form of the Markov-matrix.  A second subject 

concerns the extrapolation of the load spectrum recorded during investigations for extended-time operation.  

The third problem reported is the comparison of the calculated damage accumulation effect induced by different 

load spectra. 

 

Introduction 
Information about the load spectrum (LS) is necessary for 

estimation of a glider’s operational life.  As it is well known, 

the LS contains data on the number of load cycles at a given 

range of load factor variation.   Such information is crucially 

important for the glider certification procedure  
 

Load spectrum evaluation 
 The first step for the LS estimation is load recording during 

the glider’s operation.  In the case of the PW-5 glider, designed 

at the Warsaw University of Technology, the system for the LS 

data collection is shown in the Fig. 1.
1
  The system consists of 

the following three basic elements: 

•Electronic accelerometer 

•Wing spar root deflection sensor 

•Digital data recorder 
Figure 2 presents the sample time-courses of two signals 

recorded during a short flight (aerodrome circle) consisting of: 

winch towing, period of smooth gliding and some aerobatic 

evolutions.  The upper signal u comes from the wing spar root 

deflection sensor, while the lower signal nz comes from the 

accelerometer.  

Those signals can be correlated by presenting them in the 

same diagram (the accelerometer signal marked on the vertical 

axis and the signal from the wing spar root deflection sensor 

on the horizontal axis).  It can be clearly seen that in some 

areas of the diagram (Fig. 3) those two signals are correlated 

while in the other areas they are not correlated. 

More detailed analysis of Fig. 3 shows us that the first non-

correlated zone is associated with the period of winch 

launching and the other one is associated with the ground 

operations, especially the take-off and landing run.  During a 

free flight, it can be observed the full correlation between the 

signals, and the correlation formula is linear.  

The best way for load spectrum evaluation consists of 

using the Markov transfer matrix MM.  This method was 

elaborated by German scientists
2
 (Fig. 4). 

The Markov matrix used for the LS is a square array, 

comprising 32 x 32 cells.  The cell with the index i,j contains 

the number of load changes from the i-th level to the j-th level.  

The diagonal containing the cells with the index i=j is called 

„0-Diagonal” and is eliminated.  To apply this matrix, the 

signal recorded during the flight should be filtered and 

transferred from the form of a 2-column array (i.e.  Time and 

Signal Value according to a sampling frequency of the digital 

recorder) to the form where the signal is represented only by 

the sequence of Local Extremes.  Following the Local 

Extremes sequence for the whole flight course, it is possible to 

fill-up the Markov matrix which, then, covers the whole 

information about the load spectrum during the flight. 
An example of such a matrix is shown in Fig. 5.  In this 

sample case, the signal from the wing spar root deflection 

sensor (recalculated on the Load Levels scale) from Fig. 2 was 

used here as the input-data.  

Other time-courses of the load signals, registered in 

different kinds of flights underwent the same procedure.  The 

output is shown in the Fig. 6 in the form of sample Markov 

matrices determined for Thermal flight, Soaring flight, Wave 

flight and Aerobatic flight.  The light color indicates the active 

zone of the Markov matrix, i.e.  the square which is the 

envelope of  rows and columns containing at least one signal 

change.  The dark color indicates the zone of small load 

variations near nz = 1.  The following features are noted from 

Fig. 6: 

 It can be seen that, as expected, the largest active zone of 

the matrix is produced during the Aerobatic flight.   

 The Wave flight produces also a large active zone, but it is 

due to the rotors influence mainly in the first stage of the 

flight.  Later in the flight it is very smooth and the number of 

load changes increases mainly near the dark zone. 

 The smallest active zone was produced during the Thermal 

flight.  In this case it was quite a smooth flight – just a 

recreation flight over the airfield.  During cross country flights 

this active zone is larger.  From author‘s experience, the 
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difference between the active areas of the matrix concerning 

Thermal flight or Soaring flight is not large. 

The Markov matrix creates the bases for easy processing of 

the load spectra.  Having the set of Markov matrixes obtained 

for several flights or several flight missions, it is possible to 

produce a new matrix as a sum of all single matrices.  This 

matrix presents the cumulative load spectrum for certain 

operation time (i.e. the total number of flight hours spent 

during the LS recording session). 

The load spectrum in the form of a Markov matrix is very 

useful.  For example, it is easy to transfer this form of the LS 

to one of the traditional (i.e. incremental) forms, represented 

by the nz and the cumulative number of occurrences.  Before 

this operation it is necessary to apply the Rainflow Counting 

Algorithm when the Markov matrix is calculated.  
3 

Sequentially eliminating the values along the diagonal lines  

starting from the first pair of lines close to the „0-Diagonal”, 

and counting a sum of the values in the remaining cells of the 

matrix, it is possible to obtain the number of occurrences for 

different values of the Load Level increment LL.  The result 

of this operation is shown in the table situated in the Fig. 7.  

Presented in the table are the numbers of occurrences for LL 

equal to at least 1, or at least 2 and so on.  In the case 

considered here, the absolute value of the LL was taken into 

account.  This means that the concept of a symmetrical model 

of the load spectrum is investigated here. 

The table in Fig. 7 contains also the values of nz 

calculated for given values of LL.  It allows us to present the 

measured load spectrum in the traditional form i.e.  nz versus 

NC1h, where NC1h is the cumulative number of occurrences per 

hour.  Instead of the curve interpolating the Test-Data, it is 

possible to apply a broken line.  This method produces the 

chart called Kaul’s Diagram in Fig. 7, which was used in the 

past for load spectra calculation. 

If the positive and negative values of LL are separated, it 

is possible to introduce the concept of a asymmetrical model of 

the load spectrum (Fig. 8).  The table in that figure contains the 

values of  numbers of the load changes separately for negative 

and positive LL (or for the corresponding values of nz).  The 

load spectrum obtained using this method is shown in the chart 

in Fig. 8.  As it can be seen, the left and right branches of the 

chart are not exactly the same.  This means that taking into 

consideration the absolute values of the LL, the resulting load 

spectrum is more conservative and overloads the construction 

during fatigue tests. 

 

Load spectrum extrapolation 

When the load spectrum for a certain time of operation is 

obtained, the main problem consists in extrapolation of this 

spectrum for the Modeled Period of Operation - MP; (in 

general MP = 1000 flight hours).  The extrapolation may be 

achieved using several methods.  The first method is a 

statistical analysis of the cumulative occurrences per hour NC1h 

at a given LL performed on the series of recorded load 

spectra.  An example of this analysis, conducted for 8 thermal 

flights (where the total operation time was 914 minutes in the 

air), is presented in Fig. 9 the chart containing two curves.  The 

lower curve represents the mean value of the NC1h_m.  The 

upper curve represents the upper values of the cumulative 

number of load changes per hour NC1h_up.  This curve is 

generated by adding 3 (three standard deviations) to the mean 

value for each LL.  The curves obtained in this way create a 

basis for load spectra extrapolation.     

In the case of an incremental load spectrum, two concepts 

of the extrapolation were considered: 

• Method I: Expanding the range of LL for Test-Data mean 

values up to the limit specified by the rules for a given type of 

the glider (Fig. 10).  In this case, the values at the vertical axis 

are calculated using the formula given in the upper chart. 

• Method II: Extrapolating the Test-Data range by means of the 

curve calculated from the Test–Data approximation formula 

(Fig. 11).  This formula is produced using the data formed by 

the pair of numbers: the LL (or nz) and by the NC1h_up 

multiplied by 1000; (as assumed here the Modeled Period MP 

= 1000 h). 
The application of the Markov matrix to the load spectrum 

presentation allows for extrapolation of the Test-Data for the 

Modeled Period of operation, using stochastic methods 

(Method III).  Such an extrapolation was made by the author 

using a special computer program.  The idea of extrapolating 

procedure is as follows.  Suppose that our interest is focused 

on the standard flight mission (with a recurrent scenario), for 

example the Thermal flying over the airfield (without any non-

standard behavior, i.e.  intentional aerobatics).  Suppose that 

we have recorded the loads during such a flight and obtained 

the Markov matrix which is treated as the input-data matrix.  If 

there are a number of occurrences in the cell MMij, then in the 

next flights we may expect that this number of occurrences 

will be redistributed around the cell MMij according to the 2-

dimensional Gauss distribution (Fig. 12). 

This redistribution takes place for each cell of the data-

input matrix and can be simulated numerically.  As a 

temporary-output we obtain a matrix of the values calculated 

as superposition of all redistributions.  This process may be 

repeated several times.  At the end, we obtain an output-matrix 

with the simulated load spectrum for other flights.  The process 

is stochastic, so every output is different. 

Of course in the case of single flights, the probability is low 

that the simulated load spectrum will be exactly the same as 

any spectrum measured in flight.  But in the case when the 

input-matrix is a cumulative matrix for a series of flights, and 

we sum the outputs from the simulation process up to the 

Modeled Period of Operation, the probability is high that the 

final result will be similar to the spectrum measured for the 

same period and depends on the cumulative number of flight-

hours for the input-matrix. 

As an example of such an extrapolation method, three 

simulations were made.  It was assumed in the program that 

redistribution of the cell MMij value can be performed in the 
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range covering ±2 cells (in rows and in columns) of the 

Markov matrix. 

Three quasi-Gaussian probability distributions were 

applied (Fig. 13).  The algorithm of redistribution was repeated 

20 times for a single program run.  As a result, three output 

matrices were obtained.  Figure 14 presents the input-matrix 

and one of the output matrices.  It can be seen that the active 

zone of the output-matrix increased, as compared to the input-

matrix.  The cumulative number of occurrences also increased 

(approximately linearly as the simulated operation time 

passed).  Together with the MMs, the 3-D images of values 

distributions are presented in the input and output matrices.  

When applying a linear scale for the vertical axis, almost the 

same shape of 3-D images resulted (the number of occurrences 

differed only).  The differences become visible after changing 

the linear scale into a logarithmic scale, and such images are 

displayed in Fig. 14. 

Figure 15 presents the comparison between the load spectra 

for 1000 hours of operation obtained using different 

extrapolation methods.  This is a result of the Rainflow 

Counting Algorithm application to the data written as the 

Markov matrices. 

The load spectrum used for PW-5 glider fatigue tests 

(application of the Stafiej LS evaluation method
4
) and the 

load-increments derived from the standard load spectrum 

Kosmos 2 are used as the reference.  It is very important to 

emphasize here, that both these reference spectra cover all 

flight missions - not only Thermal flights ! 

It can be seen that the biggest number of load changes for 

each LL-value results from Method I.  Method II generates 

the spectrum, for which the Stafiej-spectrum looks as a step-

envelope.  The results of Method III are the lowest, but the 

number of loads (starting from LL = 7) increases as the 

probability distribution in the “MM-redistribution program” 

becomes more flat. 

 

Load spectrum and fatigue effect 
The comparison between load spectra using only the 

cumulative number of occurrences is insufficient.  Much more 

useful is a comparison using the fatigue damage accumulation 

CD.  The basic theory here is the Palmgren-Miner hypothesis.  

The Palmgren-Miner formula adapted for the Markov matrix 

applications is written below. 
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Instead of load cycles, we now have the load changes (load 

increments).  One occurrence of load change between the 

levels i and j plus one occurrence of load change between the 

levels j and level i produce one load cycle.  The symbol N in 

the above formula indicates the number of load changes to 

failure, while the symbol n indicates the number of loads 

changes in the spectrum. 

For damage calculations, we need information about the 

values of N.  This is a serious problem because the data are 

difficult to obtain.  One of the best ways for storing the data is 

the Haigh diagram.  Figure 16 presents the diagram published 

by Kensche for the composite used for the wing spar web.
5
  

The dark color indicates the useful zone of this diagram when 

the wing spar web is calculated for the stress-level limit in 

terms of the factor Kd = 16 km 
6,7

. 

This diagram was used for calculation of damages 

produced by different load spectra.  For this purpose a special 

array was created (Fig. 17) containing the damage Dij values 

for the unitary Markov matrix (all cell values equal 1, except 

for „0-Diagonal”).   

As it can be seen in Fig. 17 the damage value Dij depends 

strongly on the position of the cell in the Markov matrix.  In 

the linear scale, only values in the cells situated far enough 

from the „0-Diagonal” are visible in the bar-chart.  Application 

of the logarithmic scale reveals that the difference between D-

values for near the „0-Diagonal” cells and the cell MM3,31 or 

MM31,3 is about 10 orders. 

That is why the positions of the cells in the matrix 

containing the LS is important.  Even if the number of load 

changes in the cells near the „0-Diagonal” is relativity high, 

those cells do not produce significant values of damage, as 

compared with the cells containing small numbers but situated 

far from „0-Diagonal”.  That is also the reason why in the 

spectrum Kosmos 2, the values in 4 cells under and over the 

„0-Diagonal” are neglected. 

Having the array of damage Dij values for the unitary 

Markov matrix it is very easy to calculate the accumulated 

damage CD for the load spectra written as a Markov matrix. 
The procedure consists of the following two steps: 

1. Multiply the values MMij and Dij in the whole range of 

indices i, j variation; 

2 .Sum up all results. 

In the case of the traditional (incremental) form of the load 

spectrum, it is necessary to write this spectrum into the 

Markov matrix.  As in the incremental kind of spectrum, the 

information about reference level of loads is lost during the 

spectrum creation.  Thus, this operation may be performed 

only in an approximate way. 

The Fig. 18 displays the algorithm of the method applied by 

the author: 

1. Having the load spectrum curve, write it as the step-wise 

spectrum. 

2. For each stair level, find the appropriate diagonal line in 

the Markov matrix. 

3. Distribute the total number of load changes for each step 

along the diagonal line according the Gauss distribution. 

Figure 19 presents the comparison between damage 

accumulations for the different methods of extrapolation.  The 

analysis is made for the wing spar web based on the High 

diagram presented in the Fig. 16.  As a reference, bars show the 

results calculated for reference spectra No 1 and No 2. 
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Method I produces the most restrictive load spectrum which 

yields the highest value of damage accumulation. 

Method II yields the result which is placed a little bit under 

the damage accumulation value of Reference LS No 2.  It is 

necessary to emphasize that application of this extrapolation 

method is hazardous because it is an extended extrapolation 

and the shape of extrapolation curve strongly depends on the 

topology of the input-data (see Fig. 11).  The solution to this 

problem would be the pre-specification of certain values at 

LLmax  (for example 10
2
 load changes). 

The results from Method III depend on the assumed 

probability distribution.  Although the results are much lower 

than those from Methods I and II, it is still a conservative 

damage accumulation evaluation method.  The conservatism of 

the method is visible in the chart (Fig. 20) presenting the 

comparison between the following results: 

 Test LS – the damage accumulation for Test-Data; 

 Prop-Test LS– the damage accumulation for multiplication 

of the Test LS value by 65 (i.e.  Ratio between a 1000 

hours and the total flight-time for the Test-data); 

 Met III-1, Met III-2, Met III-3 - the damage accumulation 

for Method III with different probability distributions. 

Although the number of load changes (accumulated number 

of occurrences) is highest for Prop-Test LS, all results from 

Method III are much higher than the Prop_Mag result.  The 

main problem here is a proper choice of probability 

distribution.  It can be made having a larger Test-Data base. 

The last problem is the number of extreme-amplitude load 

cycles (i.e. cycles between 3-th and 31-st load level) which 

may be used as some kind of a substitute for the full load 

spectrum.  Calculations were made on the same basis as 

previously (i.e.  the same array of elementary fatigue damages 

for the unitary Markov matrix derived from the High diagram 

presented in Fig. 16). 

Comparing the damage accumulation for a single extreme-

amplitude load cycle with the damage accumulation for two 

different load spectra, the Adequate Number of Extreme-

Amplitude Loads (ANEAL) was calculated.   

In case of the Reference LS No 1, the ANEAL = 229 for 

1000 operational hours while the number of the highest 

amplitude loads is 152.  It means that only this part of the 

spectrum, which contains high increments of the loads exerts a 

decisive influence on the damage accumulation.  The 

comparison of the ANEAL value for 12000 operational hours 

with the 1-step fatigue test proposed by Kensche
7
 is shown in 

Fig. 21.  The ratio between number of load cycles is here 3,65.  

This value is a bit more conservative than the scatter factor 

which should be applied to fatigue calculations in the case 

when only one specimen is tested.  But, the results are intended 

to apply to whole statistic population of the glider-type.   

Figure 22 contains a comparison of damage accumulation 

for two alternative load-programs for the fatigue tests.  In the 

first case, 10 000 of extreme amplitude cycles (from LL=3 to 

LL=31) are considered.  Alternatively, in the second case, this 

load program was divided into two separate block of loads: 

from LL=3 to LL=19 and from LL=19 to LL=31. 

As it can be seen from the bar-diagram in Fig. 22, damage 

accumulation in the first case is 183 times higher then in the 

second case.  This also means that for the same fatigue effect 

(i.e. damage accumulation value) the second load-program 

should be repeated 183 times.  Alternatively, the second load-

program may be replaced with 2·10
4
/183 = 110 cycles from 

LL=3 to LL=31. 

Of course, all the presented results strongly depend on the 

input data (i.e. number of loads to failure in the High diagram) 

and on the operational range of stress (or strains).  In the case 

of a more flat distribution of the number of loads to failure in 

the High diagram, this substitution ratio will be different (i.e. 

the number of extreme-amplitude load cycles will be bigger).   

 

General conclusion 
 The idea of Kensche concerning glider-structure fatigue 

tests
8,9

 to substitute certain numbers of the extreme-amplitude 

load cycles for the whole load spectrum seems to be 

interesting, safe and reasonable. 

Since the results of load spectra investigations for different 

flight missions depend on several parameters, i.e. weather 

conditions, pilot’s experience, and even on the fact if pilot is 

aware that the measuring equipment has been installed, the 

load spectra presented in this paper should be considered as 

sample ones valid for specific conditions. 
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Figure 1 Basic system for load spectrum measuring. 

 

 
Figure 2 Sample time-courses of recorded signals. 
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Figure 3 Correlation of the signals. 

 
 

 
Figure 4 Recording the load signal in the Markov-matrix. 
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Figure 5 Markov Matrix derived from the recorded signal. 

 
 

 
Figure 6 Examples of the LSs. 
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Figure 7  Incremental types of LS derived from MM (symmetrical concept). 

 

 
Figure 8 Incremental types of LS derived from MM (asymmetrical concept). 

 

 
Figure 9 Analysis of occurrences for given LL values 
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Figure 10 Method I – extrapolation by Test-Data range 

rescaling. 

 
Figure 12 Idea of stochastic extrapolation. 
 

 

 
Figure 11 Method II – extrapolation by the “Test-Data + 3” 

approximation formula. 

 

 
Figure 13 Probability distribution assumed in the program for 

the MM cell-values redistribution. 

 

 
Figure 14 Result of stochastic extrapolation. 
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Figure 15 Comparison between the extrapolated LSs - cumulative number of occurrences aspect. 

 

                                                                                                                                                  

 

 

 

                                                                                                                            

                                                                                                                      

                                                                                                                                                                                                                                        

 

 

                                                                                                            

 

 

 

 

 

 

 

 

Figure 16 High diagram used for fatigue damage calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Array of elementary fatigue damages (effect of the 

unitary MM and the High diagram).  
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Figure 18 Algorithm of incremental LS to Markov-matrix transition. 

 

 

 
Figure 19 Comparison of extrapolated LSs - damage 

accumulation aspect. 

 

 
Figure 20 Fatigue damage and number of load changes. 

 

 

 

 

 
Figure 21 Substitution of the LS by Extreme-Amplitude 

Loads. 

 

 

 

 
Figure 22 Comparison of damage accumulation for alternative 

load-profiles. 

 


