Indeed, a complete handicapping system may be obtained by plotting the resultant speed Column 7 versus thermal intensity Column 6 for the various competing gliders on semi-log paper. The handicap factors will be given by the resultant speed ratios with a chosen glider type as basis for the thermal intensity of the day. This thermal intensity value should be assumed as the higher I value obtained by plotting the day speeds over the corresponding glider curves (see Fig. 5).

### FIGURE 5



I - day value

- Day results
- Expected day results for A & C

## Handicapping

for B = 100 = 
$$\frac{V_A}{V_B}$$
  
for C = 100  $\times \frac{V_A}{V_C}$ 

#### BASIC ASSUMPTIONS

The numbers given in the table were calculated supposing that: All gliders have quadratic drag variations and so their flight polars may be described by an expression like

$$v = \frac{A}{V} + B \cdot V^3$$
 that becomes

$$\frac{\mathbf{v}}{\mathbf{v}^*} = 1/2 \frac{\mathbf{v}^*}{\mathbf{L}/\mathbf{D}} \left[ \left( \frac{\mathbf{v}}{\mathbf{v}^*} \right)^3 + \frac{1}{\mathbf{V}/\mathbf{v}^*} \right]$$

after imposing as boundary conditions, a point and a tangent value of one (unity) at the maximum glide conditions.

To calculate the resultant speeds  $(V_r)$ , it was supposed that the sinking speeds when thermaling may be estimated as 150% of the glider minimum sink, as usual for medium bank (approximately 40 deg) turns without flaps. So we have:

$$v_c = I - 1.5 \cdot 0.87742 = I - 1.31613$$

#### CONCLUSION

The presented table, although giving approximate results, greatly simplifies computing work for sailplane pilots. If one realizes the magnitude of the errors normally involved in flight testing, graph-

ical determination of tangent points and in commercial published data, he will see that the table may be useful, even when "flight tested" polars are available.

# EDITOR'S CORNER READING LIST IN AERONAUTICAL ENGINEERING

- 1. A Study of NACA and NASA Published Information of Pertinence in the Design of Light Aircraft, Vol. 1--Structures, Frederick O. Smetana, NASA CR-1484, February 1970.
- 2. A Study of NACA and NASA Published Information of Pertinence in the Design of Light Aircraft, Vol. II--Aerodynamics and Aerodynamic Loads, James C. Williams III, et al., NASA CR-1485, February 1970.

# EDITOR'S CORNER (continued)

- 3. A Study of NACA and NASA Published Information of Pertinence in the Design of Light Aircraft, Vol. III-- Propulsion Subsystems, Performance Stability and Control, Propellers, and Flight Safety, Clifford J. Moore and Dennis M. Phillips, NASA CR-1486, February 1970.
- 4. Initiation of Failure Mechanisms in Glass-Resin Composites, William J. Eakins, NASA CR-518, August 1966.
- 5. An Evaluation of the Slurry Compaction Process for the Fabrication of Metal-Matrix Composites, Thomas T. Bales and Ronald L. Cain, NASA TN D-6107, February 1971.
- 6. "Carbon Fibres...at BAC," Molly Neal, FLIGHT International, 9 April 1970, pp. 595-97.
- 7. "Strengthening Glass and Glass Ceramics," A. F. Shoemaker, Mechanical Engineering, September 1969, pp. 26-31.
- 8. "Carbon Composite Technology," John E. McDonald, Mechanical Engineering, February 1971, pp. 21-27.
- 9. "Developments in Polymeric Materials,"
  J. Scanlan and M.E.B. Jones, The
  Aeronautical Journal of the Royal
  Aeronautical Society, Vol. 73, No.
  705, September 1969, pp. 725-33.
- 10. "High-Strength, Heat-Resistant Metal-Matrix Composites Save Weight in Aerospace Parts," W. A. Compton, et al., SAE Journal, Vol. 76, No. 8, August 1968, pp. 53-57.
- 11. "Boron-Epoxy Composite Material Saves Wing Box Extension Weight on F-111B Aircraft," Arthur August, et al., SAE Journal, Vol. 77, No. 5, May 1969, pp. 42-45.
- 12. "Future of V/STOL Aircraft May Depend on Composites," Lloyd E. Hackman, et al., SAE Journal, Vol. 77, No. 10, October 1969, pp. 64-67.
- 13. "F-14 Spurs Advance in Composites,"
  Michael L. Yaffee, Aviation Week &
  Space Technology, March 17, 1969.

- 14. "Carbon Composite Program Gains,"
  William S. Hieronymus, Aviation Week
  & Space Technology, August 18, 1969.
- 15. "Development of Metal-Matrix Composite Blading for Gas-Turbine Engines,"
  J. A. Mangiapane, et al., J. Aircraft,
  Vol. 6, No. 4, August 1969.
- 16. "Advanced-Composite-Material Application to Aircraft Structures," Charles W. Rogers, J. Aircraft, Vol. 5, No. 3, May-June 1968.
- 17. "Composites: Designers Wait and Contemplate," P. Michael Sinclair, Industrial Research, October 1969.