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NOTATION
c vgrtical velocity of the
air
v sailplane's airspeed
W sailplane's vertical

velocity with respect to
ambient air

W sailplane's vertical veloc=-
) ity with respect to ground

INTRODUCTION

The flight technique that often
yields the best result in cross-coun-
try flying is the so=-called '"dolphin
motion" (i.e. pulling up in 1ift,
diving through down, no thermal cir-
¢ling). This technique is especially
effective in cloudstreet flying, en-
abling long distances of the course
to be covered in straight flight
(the dolphin technigue is a mode of
dynamic soaring).

In this paper we attack the. prob=
lem of minimum flight time in dol-
phin soaring. We assume that there
is no wind and that the thermal con-
ditions are given along the course to
be flown. We further assume that the
sallplane's polar is known and that
the sailplane is flown in such a way
that the polar equation is satisiled
all the time, i.e. no transients are
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supposed to occur. Thus the sall-
plane goes continuously along the
polar from one stationary flight con-

dition to another. This, of course,
requires delicate maneuvering.

Ne solve the minimum flight time
problem by means of the calculus of
variations. We also apply the results
obtained in the numerical derivation
of the optimal ailrspeed policies of
Nimbus=2 on the flight courses of two
simple examples.

SOLUTION OF THE
VARIATIONAL PROBLEM

In the minimum time problem, we
are to find a continuocusly differen-—
tiable function y(x) (velocity func-
tion) for which the integral

Ro
F(y) dx
X

L = (L)
1
takes on a minimum value and for
which the constraint condition
.
J = f G{x,y)dx = k (2)

i

where k is a prescribed constant,
is satisfied.




Consequently, to solve our varia-
tional problem we solve the Euler-
equation

% (F+ A@) = 0 (3)

where ) 1s a constant. We carry

through the calculation and determine

it, so that the constraint\!?2 g dx = k
1

is satisfied.

OPTIMAL DOLPHIN SOARING

It is customary in graphs,
representing sailplanes! polars to
consider the sinking rate w positive.
In this paper, however, we define
sinking as negative in order to avoid
confusion. Thus motion and transi-
tion upwards are positive and down-
wards negative, If this agreement is
kept in mind, we need not resort to
vector notation,

Let the horizontal distribution
of the vertical velocity component of
the air be given by c(x), where x is
horizontal distance from a reference
point (horizontal velocity component
of the air is zero, i.e. no wind),
Then the sailplane's vertical veloc=-
ity component with respect to ground
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W =W + C (1)
. (x) )

where w is the sailplane's vertical
velocity with respect to ambient air.
Since the sailplane's horizontal ve=
locity with respect to ground in ab-
sence of wind is approximately (a
zood approximation? equal to its air-

speed, we can write
at = 4% _ dx (5)
dx ~ v
dt

From Eg. (5) we obtain
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(6)

In order to minimize the flight time
from the point x = Xq to the point

¥ = ¥, we have to minimize the inte-
gral 6f Eq. (6)s On the other hand,
it is often desirable to maintain a
constant altitude in the sense that
h(xl) = h{x,) (between the end points
the altituds generally varies), or
perhaps it is possible to allow a
small altitude difference bhetween
the end points. This gives us the
constraint-

&N

which by Egs. (4) and (5) can be writ-
ten in the form

X
2 dx
w + a(x)] == fh (8)
il

Consequently the problem is as follows

(9)

2
2 dx
when / (w+c(x)] == = sh
Xy v

The problem is clearly the vari-
tional problem of Section % (the pola
equation gives w = w(v)). The solu-
tion of the problem is v* (x), which
minimizes the flight time and sati-
fies the altitude constraint, It is
also clear for physical reasons that
v* (x) is the minimizing solution,
not the maximizing one. Thus we have
obtained the optimal airspeed policy
in straight flight between the points
X » Xq and x = X5e According to this

policy, .as we shall see, the pilot
has to slow down in 1lifts and hurry
on in descending air. Due to this
fact this optimal technigque has been
called the Ydolphin motion',
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POLAR EQUATION AND
QPTIMAL ATRSPEED POLICY

The points of a sailplane's polar
w = w (v) give the (v,w)=combinations
that are valid in different stationary
gliding states., If the pilot wants
to change his sallplanefs gliding
state, he must take an action, which
leads to the chanre = in other words -
he uses the joysgtick., If there is a
substantial change in the gliding
state and the action iz abrupt, a
tranzient follows between the pgliding
states when the polar equatior is not
satisfied. If, on the other hand, the
pilot operates slowly enough and con-
tinuously, no transients lollow or
they are so slight that they can be
ignored, Ve assume that steering oc=
curs in thisg manner so thalt Lhe polar
equation is valid all the way through
the course,

The general form of the polar
equation is

w = Av° + Bv + C/v (10)

where A, B and C are constants. In
the region of the "laminar bucket®,
the approximation

W= AVB + Bv (11}

is often applied. Further for a sym-
metrical bhodv we can 7

w = Av> + C/v (12)

However, it is possible to approxi-
mate the polar equation by other
kinds of expressions, too, For cx-
ample, the polynomial

W= v 4 By 0 (13)

can successfully be fitted to a sail-
plane's -polar dalta, as we shall sec,
An accuracy of ~ 2% is easily ob=-
tained by the approximation of Eq,
(13). From this point on we suppose
that the polar eguation is given by
Eqs (13).

By Egq. (13) the problem now
reads (see Expression (9))

min — , (14)

X5
when / Av + B + C+elx) dx = fh
%

1

wiiere Ah is prescribed. Consequent-
ly our zuler-cguation (3) takes the
form

3 1 C + a(x)
5 ot AAV + B+ —

=0 (15)

witich has the solution

vw):.“la-m%+eu)1 s

Tne Lagrange-multiplier » must be so
chosen Lhat the altitude constraint
1s satisfied. Substitution of Eq.
(12) to the constraint leads to an
uncomfortable integral. For this rea-
son, we have to apply numerical inte-
gration and solve A by iteration.

X
I

CASE OF C(X) = & sin

In order to progress from this
point, we have to fix the function
c(x)s In order to show clearly the
behaviour of "pulling up in 1ift and
diving through down" we now suppose
that

c(x) =8 sineg, (¢ >0 , p=m/a) (17)
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TInen, of course, Eg, (16) takes the
form

bl = ‘/1 + Ale + @ sin o] (18)

M

According to our agreement, both A and
C are negative (see Fig. ls. IFurther-
more, to keep v finite, we have to

assume ) #0 e also assume that
¢ > |e].
w !
|
v

(0,C) ‘L

|
Figure 1. Polar Equation Approxima-

tion w = AvZ + Bv + C. MNotice the
direction of the positive w-axis,
Accordingly A<0 and C<0. The line
of dashes is the imaginary extension
given by the quadratic approximation.
The approximation is good in the re-
gion of the >» laminar buckets<<.

Next, suppose that 3 > 0. Then
M <0, since & < 0, 1In order v to
be real, we must have 1 + A(C +c¢ sin )
<0 for allu@ » From this we write
A = =1/IC +c sin @] for all o that
satisfy the condition C + ¢ sin o > 0.
As ¢ > |e|, then for example at ¢ = 1/2,
C+csingpg=C+c >0, and we obtain
A =-1/[C-+ ¢] <0, which contradicts
outr assumption of A being positive.
thus conclude that

We
A <0 (19)

fact that A =0
is real, we must

Inequality (19) and the
show that M > 0. As v
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have 1 + A[C + T sin @] 20 for all .
From this we write X = -1/[C + © sin @]
for all ¢ that satisfy the condition

C + ¢ sin @ >0. Then A zmax{-1/{C +
¢ sin o]}, when C + & sin ¢ >0, i.e.
Az-1/[C +2]. WhenC + € sin o =0,
we have 1 + A[C + & sin @] > 0, and v is
real (M > 0). As a swmmary we write

s1/lC+21=x <0 (2 > e (20)

Now our constraint takes the form (see

Expression (14))
DS
5 ] dx =
(21)

/XQ[ C + C sin
Av + B +
A¥
®a &
o] PO
i Vv
¥l

*1

Conseguently, the optimal airspeed
function given by Eq. (18) where

» must be so chosen that Eq. (21) is
satisfied. 1In Egq, (21) Ah is a pre-
scrived constant. Since ) must be de-
termined by iteration, it is useful

to notice the range of i given by Ex-
pression (20).

th

BT
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TWO EXAMPLES

We now choose Nimbus=2 as the
sallplane. From (1) we obtain the
polar data for Nimbus-2. According to
the manufacturer, the minimum sink
rate 0,48 m/s is achieved at 75 km/h.
At 160 km/h, the sink rate is 1,52
m/s. If we fit the polynomial of Eg.
(13) to the data in such a way that
the approximate polar curve has the
maximum at ?5 km/h, =0,48 m/s and
goes through the point 160 km/h,
~-1,52 m/s we obtain (1)
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w = AVZ

where

A = -0,001866 s/m (22a
B = 0,07775 (22b
C = ~1,290 m/s (22e

and v is in m/s.
that the approximation given by Lgs.
(13), (22a§, (22v), (22c¢) is quite
satisfactory for our purpose.

TABLE 1. POLAR APPROXIMATION OF
NIMBUS-2. wae IS THE ACTUAL SINK

RATE AND wappy THE APPROXIMATE SINK

RATE.
v@a/n) | vy (n/s) | <w, o (0/8)
75 0,48 0,48
100 0,58 0,57
140 1.3 1.09
160 1,52 Xy 58
180 2,02 2,07
Let us further choose
c =2 m/s (23)

Example 1, We now assume that
we fly through a 1ift and the sub-
sequent down of the curve c(x) =

Then in Eq.
(21) evidently © = 0 and %, = 2m.  We

choose a = 2 km and ph = -70 m (i.e.,
during the flight of 4 km the altitude
is decreased by 70 m), and so we write
Eq. (21) to the form

2 sin %? m/s (see Fig. 2).

tBH Ly WYy = 64 l/h

[

From Table 1 we sece

24

21
/ I:AV+B+————-—C+CSinCp] de =
0 W

T &h

= ~ -0,110 (24)

where v is given by Eq. (18). A1l
the necessary constants A, B etc.,
have been gilven numerical values. It
is only left to fix ) so that Eq.
(24) i=m valid. From Expression (20)
and Egs. (22c) and (23) we write

-1,41 s/m = )} <0 (25)
c(x)
E-2Me oo
& ///F_mx\\
I \I
a '.T a .
| f' X
)’j
\H_;,//
Figure 2. Sinusoidal Variation of

c(x).

In this interval » = -0,66 s/m is
found to satisfy Eq. (24)« This
value of ) was accomplished by itera-
tion. In each step a value of i was
chosen and the integral of Eg. (24)
was computed by the method of Simpson,
The iteration was continued until the
integral assumed the value -0,110,
With » = =0,66 s/m Eq. (18) gives
(A, C and ¢ are given by Egs,., (22a),
(22¢), and (23) respectively) the
airspeed variation v* (o), which is
tabulated in Table 2., The technigue
of "pulling up in 1lift and diving
through down" is very clearly demon-
strated., The minimum airspeed is at-
tained at o = n/2 and it is 75 km/h,
l.es quite near the stall velocity,
which is 64 km/h (7). Thus the alti-
tude decrease could not be significant-
ly smaller than 70 m. when 2a = L km,
Consequently this example also demon-
strates a situation, where the alti-
tude loss is minimal,
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TABLE 2. AIRSPEED v* («) OF EXAMPLE 1.
o 0 /4 /2 31/4 m sT/4 31/2 /4 21
x (km) 0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0
V¥ (km/h) 140 98 75 98 140 171 183 A7 140
c(m/s) 0 1,414 2,0 1,414 0 -1,414 ~2.0 -1,414 0
Example 2. We next fly our Nim=- SUMMARY

bus=-2 through the 1lift part of c(x)
of Figure 2 and choose Ah = 0, Eg.
(21) now reads

-
/ [AV+B+£i%illﬁ]d¢=0 (26)
0

Again v is given by Eq. (18). Now
with A = =0, 30 s/m the integral of
Eq. (26) assumes the value -0,00039
50 that A = =0,30 s/m will do for
the approximate solution. Eq. (18)
gives the airspeed variation v* ( @),
which is tabulated in Table 3., We see
that to minimize the flight time
through a single lift we are able to
fly with quite high speeds, although
Ah = 0.

TABLE 3. AIRSPEED v*(w) OF
EXAMPLE 2.
i) 0 /4 | n/2 | 31n/4 n
v (km/h) | 179 | 149 | 135 | 149 |179
c(m/s) 0 (1,414 2,0 |1,414 | ©

e
.

In this paper we have solved the
problem of minimum flight time in dy-
namic soaring by the application of
calculus of variations, The sailplane
is assumed to go from one stationary
flight condition to another continu=
ously so that the polar equation is
satisfied all the time along the
course. Consequently all possible
transients are ignored.

The optimal airspeed policy is
derived by applying a quadratic polar
equation approximation. The applica-~
tion of the "laminar bucket!" approxi-
mation of Eq, (11) would lead to a
cublic root expression of the optimal
airspeed, ise., no difficulties would
have arised, if it had been applied,
We, however, apply the quadratic polar
equation approximation, because 1t can
be fitted to a sailplane's polar data
quite satisfactorily, and because the
square root (see Eq. (16)) operation
is more easily effected than the cubic
root operation in manual numerical
calculations,.

We treat the special case of sinu-
soidal 1lift variation and give two
examples, the first of which clearly
demonstrates the optimal "dolphin

motion."
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