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A SPEED RING FOR CLOUD STREET FLYING

Malcolm J. Abzug

SUMMARY

A modification of the MacCready speed
ring is proposed. The modified ring,
which could be added as a second scale
to a standard ring, is designed to
give the pilot optimum speeds to fly
between straightaway climbs. 1In
order to arrive at a simple arrange-
ment, it is necessary to assume &
fixed value for airspeed in the
straight climb. Assuming climbs at
the airspeed for minimum sink rate
corresponds to a practical strategy.
A numerical example is provided.

INTRODUCTION

The classical MacCready speed ring
provides optimum cruise speeds between
circling climbs. Flying cross-
country using extended areas of lift,
without circling, is now feasible as

a result of advances in glider perfor-
mance. A modified speed ring may be
useful under such straight climb cir-
cumstances. A previous paperl by
Kauer and Junginger presented such a
modification. That paper assumed a
sinusoidal model for atmospheric ver-
tical velocity. Another such modified
speed ring is developed in this paper
using a square-wave model for atmos-
pheric vertical velocity, and other
assumptions,

SYMBOLS
h = Altitude change, positive for
gain. h¢p - climb leg,
hey - cruise leg
t = Elapsed time for flight leg.
tel - climb leg, tep - cruise

leg

V = Speed along course on cruise leg

Vat = Air mass vertical rate in cruise,
negative for sink

Vay = Total (glider sink plus thermal)
climb rate, positive up

Vo1 = Speed along course on climb

Vm = Airspeed for minimum sink rate
in still air

Vs = Glider sink rate in still air,
negative down

V¢ = Air mass vertical rate on climb
leg, positive for 1lift

Vx = Average cross-country speed

y = Flight path angle, positive for
climb

* = Starred values are optimums, maxi-
mizing average cross-country
speed

THE ATMOSPHERIC MODEL

An idealized square-wave model is
assumed for the cloud streets and areas
of sink between them. A uniform upward
vertical velocity is assumed under the
cloud street, while a uniform sink ve-
locity is assumed between the cloud
streets. The glider is flown in a
straight climb along the course in lift,
and in a higher speed cruise along the
course in sink.

SOLUTION FOR MAXIMUM AVERAGE
CROSS-COUNTRY SPEED

The average cross-country speed is

VX = (Vtcr B VCl tcl)
(ter + tei)d

A fundamental assumption is that a cycle
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consists of a climb leg followed by a
cruise leg, and that the altitude at
the end of each cycle is the same as
at the start. The condition for no
net altitude change after one cycle is

hei *+ hep = 0 (2)

These altitude changes can be written
as

= Vavtel,

hep = (Var + Vg) tep (3)

=n
g
—
I

Substituting Equation (3) into Equa-
tion (2)

Vavtel + (Vat + Vg) tep = 0,
or

teliter = - (Vat + Vs)/Vay (4)
Now using Equation (1)

Vx = Vtep/(tey + te1)

+

Verteg/(tey + teg)

V/(1 + teyp/ter)

1l

+

Ve1/(1 + tep/teq)

Using Equation (4)
Vx = V/(1 - (Vs + Vat)/Vay)
+ Ve1/(1 - Vay/(Vs + Vae))

(Way - Vel Vg - Veg Vae)
" (Vav - Vs - Vap) (5)

Equation (5) is differentiated with
respect to the cruise speed V and the
derivative is set equal to zero, to
find the maximum cross-country speed
Vx*. Note that while Vy and Vg are
functions of V, Vay, Vc1, and V¢ are
not.

(V Vay = Ve1Vs - Ve1Vae) (3Vs/aV)
Ve - ViR

BVy =
3V (Vay -

Vay - Vep (3V4/0V)

Vav - VS B Vat

(6)

Setting Equation (6) to zero gives
(V¥Vay - Vep Vg* = Vg Vap) (aVg BV)*
+ Vay (Vay - Vg* - Vayt)

- Ver (BVg/aV)*(Vgy - V& - Vo) = 0
Solving for (8Vg/av)*

Vs* + Var - V
[a_v S] & _ 5 at av
vV Ve - Vg (7)

Equation (7) is the desired result. It
reduces to the standard MacCready solu-
tion, as required, for a zero speed along
course on the climb leg, or V.1 = 0. In
the general case, the speed along course
on the climb leg is an arbitrary para-
meter. Some considerations on the

choice of climb speed follow.

CHOICE OF SPEED ON CLIMB LEG

Climbing along course at the airspeed

for minimum sink rate Vy would seem to
make best use of the lift. However,

that precise climb speed will not in
general satisfy the condition for no net
altitude change expressed by Equation
(2). Aside from that mathematical con-
dition there are practical situations
where lower or higher airspeeds would be
better. A lower airspeed would be better
1f 1ift was strong and the pilot was
trying to incline the flight path upwards
as steeply as possible without regard to
maximizing average cruise speed. This
case 1s illustrated as follows: The
flight path angle is

y = (Vg + Ve /V (8)



The maximum or steepest climb angle is
found in the usual way be differenti-
ating Equation (8) and setting the
differential to zero,

_ (Vg + V)

ay/ v = =0 (9)
vz

This gives

Vmaxy = (Vs + V) /(3Vs/3V) (10)
Equation (10) shows that for large
positive values of the air mass ver-
tical rate V¢, the glider is flown on
the '"back side'" of the sink rate

versus airspeed curve, where 3Vg/3V is
positive. This maximizes the climb
angle without regard for average
cruise speed.

A different condition leads to higher
climb speeds along course V.j than the
airspeed for minimum sink Vp. This is
the case in which climbing at Vp

causes the maximum desired or attainable
altitude to be reached before leaving
the area of lift. It is asserted
without proof that a better policy in
that case is to climb at an airspeed
higher than Vy, reducing the climb

TABLE 1

AIRSPEEDS THAT MAXIMIZE CLIMB ANGLE
(STANDARD-CLASS GLIDER, SPEED IN KNOTS)

v v S Ve
¥ (Eq. 10)
40 | -1.3 | 0.036 2.74
45 | -1.2 0 1.20
50 | -1.4 | -.044 -.80
60 | -2.0 | -.060 ~1.60

11

TECHNICAL SOARING, VOL. IV, NO. 1

rate but increasing average cruise
speed. In a practical sense the pilot
is unlikely to be able to choose the
climb speed increment above Vp that
would cause maximum altitude to be
reached just before leaving the area
of 1ift, so that a conservative policy
of climbing at no higher speeds than
Vn seems indicated. Furthermore, the
numerical example presented subse-
quently shows that for the case in
which the pilot wishes to maximize
climb angle, airspeeds only slightly
below Vyp correspond to quite large air
mass vertical velocities. Thus, it is
concluded that for the practical appli-
cation of the street flying optimum
given by Equation (7) the climb speed
Vel can be taken as the airspeed for
minimum sink Vp.

SAMPLE CALCULATION

The previous results are illustrated
for data representing a modern standard-

class glider in Tables 1 and 2. Table
THERMAL
AIR MASS VELOCITY
v, KNOTS
6 l T s ¥ T Ll
‘ I
2
SPEED FOR MAXMAUM
L CLIMD ANGLE b
0
! |
2 1 | ;
V_, (STILL AJR MINIMUM SINK)
- il i b A
0 2 0 0 ) 100
CLIMB AIRSPEED, KNOTS
FIGURE 1. Variation of Speed for Maximum

Climb Angle with Thermal Strength
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TABLE 2

STREET AND CONVENTIONAL SPEED RING PARAMETERS

(STANDARD-CLASS GLIDER, SPEED IN KNOTS)

v A ;;5~ ;;5— v V-45 —g;i-——
x(V-45)

45(Vp) | -1.2 0 0 0 0
50 1.4 ~0.044 -2.20 5 5,00
60 -2.0 -.060 -3.60 15 1)
70 -2.6 -.080 -5.60 25 -2.00
80 -3.6 -.106 -8.50 35 = |
90 -4.8 -.146 -13.15 45 -6.59
100 6.2 -.174 -17.40 . 55 -9.58
110 -8.3 -.224 -24.60 65 -14.58

1 gives numerical results from the
application of Equation (10), defining
the airspeed for maximum climb angle.
Those results, plotted in Figure 1,
show that quite strong thermals corres-
pond to climb airspeeds only slightly
lower than Vp. This is why it is un-
likely that a pilot might wish to climb
at airspeeds less than Vy, the speed
for minimum sink rate.

Table 2 gives sample results from the
application of Equation (7). The climb
speed V., is taken as Vy, or 45 knots.
The right-hand column lists variometer
readings corresponding to specific op-
timum cruise airspeeds. For comparison,
the fourth column lists variometer
readings corresponding to optimum cruise
airspeeds for the conventional case in-
volving circling climb, Graphical solu-
tions of Equation (7) for both street
and circling climb cases are presented
in Figure 2.

SPEED RING SCALE FOR STREET FLYING

A two-scale speed ring can be prepared

from Equation (7), as illustrated in Fig-

ure 3 (p. 14). The inner scale is the
conventional or MacCready scale. The

outer scale gives optimum cruise speeds

for street flying. Both scales in

Figure 3 are designed for a hypotheti-

cal variometer calibrated at 10 degrees

of arc per knot. The inner and outer

ring markings are found by laying out

the first column of Table 2 against the

fourth and sixth columns, respectively.

The stredt scale calls for strikingly

higher cruise airspeeds than the con-

ventional scale, for the same average i
climb rates. J

The relative indications of the two
speed ring scales are illustrated in a
numerical example. Assume an average

climb rate Vg, of two knots, or about
200 feet per minute. Assume further




an air mass vertical rate in cruise
Var of -0.5 knots (sink). The tri-
angular index of Figure 3 is set at
2.0. A cruise speed of 65 knots is
read on the inner scale, correspond-

ing to a total sink rate of 2.8 knots.

This sink rate is the 2.3 knots read
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from Figure 2 at 65 knots plus the air
mass rate of -0.5 knots. A cruise
speed of 96 knots is read on the outer
scale, corresponding to a total sink
rate of 6.2 knots. This is the sum of
-5.7 knots read from Figure 2 plus the
air mass rate.
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FIGURE 2. Graphical Solution for Optimum Cruise Speed V*

Standard Class Glider
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STREET SCALE

CONVENTIONAL SCALE

FIGURE 3. Two-Scale Speed Ring
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